DOI QR코드

DOI QR Code

Development of Chicken Carcass Segmentation Algorithm using Image Processing System

영상처리 시스템을 이용한 닭 도체 부위 분할 알고리즘 개발

  • Cho, Sung-Ho (Dept. of Smart Automation, Korea Polytechnics) ;
  • Lee, Hyo-Jai (Dept. of Bio-industry mechanical engineering, Kongju National University) ;
  • Hwang, Jung-Ho (Dept. of Smart Electrics, Korea Polytechnics) ;
  • Choi, Sun (Dept. of Smart Machinery Maintenance, Korea Polytechnics) ;
  • Lee, Hoyoung (Dept. of Mechatronics Engineering, Korea Polytechnics)
  • 조성호 (한국폴리텍대학 스마트자동화과) ;
  • 이효재 (공주대학교 생물산업공학부) ;
  • 황정호 (한국폴리텍대학 스마트전기과) ;
  • 최선 (한국폴리텍대학 스마트기계정비과) ;
  • 이호영 (한국폴리텍대학 메카트로닉스과)
  • Received : 2020.12.10
  • Accepted : 2021.03.05
  • Published : 2021.03.31

Abstract

As a higher standard for food consumption is required, the consumption of chicken meat that can satisfy the subdivided food preferences is increasing. In March 2003, the quality criteria for chicken carcasses notified by the Livestock Quality Assessment Service suggested quality grades according to fecal contamination and the size and weight of blood and bruises. On the other hand, it is too difficult for human inspection to qualify mass products, which is key to maintaining consistency for grading thousands of chicken carcasses. This paper proposed the computer vision algorithm as a non-destructive inspection, which can identify chicken carcass parts according to the detailed standards. To inspect the chicken carcasses conveyed at high speed, the image calibration was involved in providing robustness to the side effect of external lighting interference. The separation between chicken and background was achieved by a series of image processing, such as binarization based on Expectation Maximization, Erosion, and Labeling. In terms of shape analysis of chicken carcasses, the features are presented to reveal geometric information. After applying the algorithm to 78 chicken carcass samples, the algorithm was effective in segmenting chicken carcass against a background and analyzing its geometric features.

우리나라 생활수준의 향상과 더불어 식품소비의 양적인 요구가 충족되면서, 세분화된 식품의 기호 성향을 충족시킬 수 있는 닭고기 소비가 증가하고 있다. 2003년 3월 축산물 품질평가원에서 고시(농림부 고시 제2003-14호)한 닭 도체 품질판정세부기준은 닭 도체 부위별 이물질 부착, 피·멍의 크기 및 중량에 따라 품질 등급을 기준을 제시하였다. 그러나 현실적으로 검사관 개개인의 주관적인 평가 기준으로 적용된 고시로 수천 마리의 닭 도체 등급판정을 유지하기가 어려운 문제점을 가지고 있다. 본 논문에서는 닭 도체 품질 세부기준에 따라 닭 도체 부위 분할하기 위해 비접촉/비파괴방식인 컴퓨터 시각 기술 알고리즘을 제안한다. 제안된 알고리즘은 실시간으로 빠르게 움직이는 닭 도체를 부위 분할하기 위하여 조명 외란에 강인하도록 보정하는 과정과 닭 도체와 배경을 구분하기 위한 EM(Expectation maximization), Erosion 및 Labeling 알고리즘, 그리고 닭 도체의 기하학적 형태를 분석하여 부위별 특징점을 찾고 점들의 위치를 계산하여 부위를 분할 할 수 있는 알고리즘을 사용하였다. 총 78마리의 닭 도체 샘플에 대하여 제안한 영상처리 알고리즘을 적용한 결과 닭 도체 부위 분할 알고리즘이 효과적임을 알 수 있었다.

Keywords

References

  1. J. M. Lee, "An analysis of characteristics in food balance and dietary patterns under the economic growth", Korean Journal of Food cookery Science, Vol. 6, No. 1, pp. 41, 1990. https://www.koreascience.or.kr/article/JAKO199003043156304.page
  2. K. Lee, S. Kim, S. Heo, "In-Depth Analysis of Food Consumption in Korea", Korea Rural economic institute Report, pp. 1-254. 2016. (In Korean)
  3. Livestock Grading criteria revision-draft, Ministry of Agriculture and Forestry, 2011, No. 2011-171 (In Korean)
  4. US Department of Agriculture, "Poultry slaughter", USDA/NASS, Washington, DC, 1997.
  5. P. Marty-Mahe, P. Marchal, V. Louveau, "Grading Lots of Turkeyes Carcasses on Suspension Chain by Machine Vision", On-Machine Vision Systems for the Agricultural and Bio-Industries. 103-109, 1991. https://hal.inrae.fr/hal-02574169
  6. K. Chao, Y. R. Chen, W. R. Hruschka, F. B. Gwozdz, "On-line inspection of poultry carcasses by a dual-camera system", Journal of Food Engineering, Vol. 51, No. 3, pp. 185-192. 2002. DOI: https://doi.org/10.1016/S0260-8774(01)00051-6
  7. Y. R. Chen, R. W. Huffman, B. Park, M. Nguyen, "Transportable spectrophotometer system for on-line classification of poultry carcasses", Applied Spectroscopy, Vol. 50, No. 7, pp. 910-916, 1996. DOI: https://doi.org/10.1366/0003702963905583
  8. C. C. Yang, K. Chao, Y. R. Chen, H. L. Early, "Systemically diseased chicken identification using multispectral images and region of interest analysis", Computers and Electronics in Agriculture, Vol. 49, No. 2, pp. 255-271. 2005. DOI: https://doi.org/10.1016/j.compag.2005.05.002
  9. R. Kang, K. Yang, X. X. Zhang, W. Wu, K. J. Chen, "Development of Online Detection and Processing System for Contaminants on Chicken Carcass Surface", Applied Engineering in Agriculture, Vol. 32, No. 1, pp. 133-139. 2016. DOI: https://doi.org/10.13031/aea.32.11200
  10. K. Chao, Hyperspectral imaging for food quality analysis and control. Academic Press. 2010, pp. 241-272. DOI: https://doi.org/10.1016/B978-0-12-374753-2.10007-3
  11. N. Ueda, R. Nakano, Z. Ghahramani, G. E. Hinton, "Split and merge EM algorithm for improving Gaussian mixture density estimates", Journal of VLSI signal processing systems for signal, image and video technology, Vol. 26, No. 1-2, pp. 133-140. 2000. DOI: https://doi.org/10.1023/A:1008155703044
  12. P. E. Brown, P. Nguyen, J. Stafford, S. Ashta, "Local-EM and mismeasured data", Statistics & Probability Letters, Vol. 83, No. 1, pp. 135-140. 2013. DOI: https://doi.org/10.1016/j.spl.2012.08.030
  13. R. B. Dhulipalla, R. C. Verma, N. K. Agrawal, N. Jain, "Visivble Image Processing For Feature Identification And Classification Of Agricultural Products-A Cricical Review Report.", International Journal of Technical Research & Science, Vol. 3, No. 9, pp.293-300. 2018. DOI: https://doi.org/10.30780/ijtrs.v3.i9.2018.003
  14. H. Hwang, "Robust Identification of Lean Tissue Quality form Beef Cut Surface Image", Food Engineering Progress, Vol. 1, No. 2, pp. 122-127, 1997. (In Korean). DOI: https://doi.org/10.1016/S1474-6670(17)43054-0
  15. S. Choi, S. I. Cho, M. H. Lee, H. Hwang, "Automatic extraction of lean-tissue contours for beef quality grading" Biosystems engineering, Vol. 102, No. 3, pp. 251-264. 2009. DOI: https://doi.org/10.1016/j.biosystemseng.2008.11.030