DOI QR코드

DOI QR Code

Effect of Different Cooling System on Performance and Hair Cortisol on Sows under Heat Stress

고온기 분만사 내 냉방 시설의 종류가 모돈의 번식성적 및 스트레스 지표에 미치는 영향

  • Oh, Seung-Min (Gyeongsangbuk-do Livestock Research Institue) ;
  • Choi, Yo-Han (Swine Science Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Dong-Woo (Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University) ;
  • Ha, Sang-Hun (Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University) ;
  • Kim, Jo-Eun (Swine Science Division, National Institute of Animal Science, Rural Development Administration) ;
  • Jung, Hyun-Jung (Swine Science Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Jin-Soo (Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University)
  • 오승민 (경상북도 축산기술연구소) ;
  • 최요한 (농진청 국립축산과학원 양돈과) ;
  • 김동우 (강원대학교 동물생명과학대학 동물산업융합학과) ;
  • 하상훈 (강원대학교 동물생명과학대학 동물산업융합학과) ;
  • 김조은 (농진청 국립축산과학원 양돈과) ;
  • 정현정 (농진청 국립축산과학원 양돈과) ;
  • 김진수 (강원대학교 동물생명과학대학 동물산업융합학과)
  • Received : 2020.12.17
  • Accepted : 2021.03.05
  • Published : 2021.03.31

Abstract

This study was undertaken to determine the effect of different cooling systems on the performance and hair cortisol of sows under heat stress. During a 21-day experiment, a total of 40 multiparous sows (Landrace×Yorkshire; 242.84±2.89 kg) were allotted to 4 treatments, each with 10 replicates (1 sow per pen). The experimental treatments were CP (Cooling pad), AC (Air conditioner), SC (Snout cooling), and MS (Mist spray). We observed an increase in the average daily feed intake during lactation (p<0.05) in the CP and AC treatment groups. AC treatment had the highest (p<0.05) and SC treatment had the lowest (p<0.05) piglet weight at weaning. During lactation, sows administered SC and MS treatments had higher (p<0.05) hair cortisol accumulation, as compared with the AC and CP treatments. Hair cortisol accumulation in piglets during lactation was highest with MS treatment (p<0.05), and lowest after CP treatment (p<0.05). MS treatment had the highest (p<0.05), and AC treatment had the lowest (p<0.05) respiratory rate and rectal temperature during lactation. In conclusion, our results indicate that a cooling pad and air conditioning cooling system increases the productivity of a sow, as compared to snout cooling and mist spray cooling systems.

본 연구는 고온기 분만사 내 냉방 시설의 종류가 모돈의 번식성적 및 스트레스 지표에 미치는 영향을 구명하기 위하여 실시되었다. 본 실험을 위해 경산돈(Landrace×Yorkshire; 242.84±2.89 kg) 40두를 공시하였으며, 냉방 시설에 기반하여 4처리 10반복, 반복당 1두씩 완전임의 배치하였다. 실험 처리구는 쿨링패드(CP; Cooling pad), 에어컨(AC, Air conditioner), 스나웃 쿨링(SC, Snout cooling) 및 안개분무(MS, Mist spray)로 구성되었으며, 포유기간(21일) 동안 진행되었다. 모돈의 성적에서 일일사료섭취량은 포유기간에서 CP 및 AC 처리구가 유의적으로 높게 나타났다(p<0.05). 이유 시, 자돈의 체중은 AC처리구가 유의적으로 가장 높게 나타났으며(p<0.05), SC처리구가 유의적으로 가장 낮게 나타났다(p<0.05). 모돈의 코티졸 농도는 SC 및 MS처리구가 CP 및 AC처리구보다 유의적으로 높게 나타났다(p<0.05). 자돈의 코티졸 농도는 MS처리구가 유의적으로 가장 높게 나타났으며(p<0.05), CP처리구가 유의적으로 가장 낮게 나타났다(p<0.05). 모돈의 호흡수 및 직장온도는 MS처리구가 유의적으로 가장 높게 나타났으며(p<0.05), AC처리구가 유의적으로 가장 낮게 나타났다(p<0.05). 결론적으로, 쿨링패드 및 에어컨 냉방시설이 스나웃 쿨링 및 안개분무 냉방시설보다 모돈의 생산성을 개선시킬 수 있을 것으로 사료된다.

Keywords

References

  1. Korea Meteorological Administration, 2019 Abnormal climate reprt, Korea Meteorological Administraion, pp10, 2020.
  2. R. Christon, "The effect of tropical ambient temperature on growth and metabolism in pigs", Journal of Animal Science, Vol.66, No.12, pp.3112-3123, 1988. DOI: http://dx.doi.org/10.2527/jas1988.66123112x
  3. F. N. Reece, J. W. Deaton, & L. F. Kubena, "Effects of high temperature and humidity on heat prostration of broiler chickens", Poultry Science, Vol.51, No.6, pp.2021-2025, 1972. DOI: https://doi.org/10.3382/ps.0512021
  4. J. Yu, P. Yin, F. Liu, G. Cheng, K. Guo, A. Lu & J. Xu, "Effect of heat stress on the porcine small intestine: a morphological and gene expression study", Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Vol.156, No.1, pp.119-128, 2010. DOI: http://dx.doi.org/10.1016/j.cbpa.2010.01.008
  5. R. C. Wolp, N. E. B. Rodrigues, M. G. Zangeronimo, V. S. Cantarelli, E. T. Fialho, R. Philomeno & L. F. Rocha, "Soybean oil and crude protein levels for growing pigs kept under heat stress conditions", Livestock Science, Vol.147, No.1-3, pp.148-153, 2012. DOI: http://dx.doi.org/10.1016/j.livsci.2012.04.014
  6. D. W. Kim, Y. H. Kim, K. S. Kim & K. H. Kim, "Effect of mixing of suckling piglets on change of body surface temperature in sows and piglets", Journal of the Korea Academia-Industrial cooperation Society, Vol.18, No.1, pp.135-140, 2017. DOI: https://doi.org/10.5762/KAIS.2017.18.1.135
  7. H. M. White, B. T. Richert, A. P. Schinckel, J. R. Burgess, S. S. Donkin & M. A. Latour, "Effects of temperature stress on growth performance and bacon quality in grow-finish pigs housed at two densities", Journal of Animal Science, Vol. No. pp. 86(8), 1789-1798, 2008. DOI: https://doi.org/10.2527/jas.2007-0801
  8. K. H. Kim, K. S. Kim, D. W. Kim, S. J. Sa & Y. H. Kim, "Effects of supplementation of dietary betaine on apparent nutrient digestibility and physiological responses in finishing pigs", Journal of the Korea Academia-Industrial cooperation Society, Vol.17, No.12, pp.407-414, 2016. DOI: https://doi.org/10.5762/KAIS.2016.17.12.407
  9. M. C. Lucy, & T. J. Safranski, "Heat stress in pregnant sows: thermal responses and subsequent performance of sows and their offspring", Molecular Reproduction and Development, Vol.84, No.9, pp.946-956, 2017. DOI: https://doi.org/10.1002/mrd.22844
  10. A. Nardone, B. Ronchi, N. Lacetera & U. Bernabucci, "Climatic effects on productive traits in livestock", Veterinary Research Communications, Vol.30, No.1, pp.75-81, 2006. DOI: http://dx.doi.org/10.1007/s11259-006-0016-x
  11. D. R. Stender, J. D. Harmon, J. D. Weiss & D. Cox, "Comparison of different styles of swine finishing facilities within a uniform production system", Applied Engineering in Agriculture, Vol.19, No.1, pp.79, 2003. DOI: http://dx.doi.org/10.13031/2013.12734
  12. R. P. Bull, P. C. Harrison, G. L. Riskowski & H. W. Gonyou, "Preference among cooling systems by gilts under heat stress", Journal of animal science, Vol.75, No.8, pp.2078-2083, 1997. DOI: http://dx.doi.org/10.2527/1997.7582078x
  13. T. T. T. Huynh, A. J. A. Aarnink, M. W. A. Verstegen, W. J. J. Gerrits, M. J. W. Heetkamp, B. Kemp & T. T. Canh, "Effects of increasing temperatures on physiological changes in pigs at different relative humidities", Journal of animal science, Vol.83, No.6, pp.1385-1396, 2005. DOI: https://doi.org/10.2527/2005.8361385x
  14. M. Barbari, M. Bianchi & F. S. Guerri, "PRELIMINARYANALYSIS OF DIFFERENT COOLING SYSTEMS OF SOWS IN FARROWING ROOM". Journal of Agricultural Engineering, Vol.38, No.1, pp.53-58, 2007. DOI: https://doi.org/10.4081/jae.2007.1.53
  15. National Research Council(NRC), "Nutrient requirements of swine", Livestock Production Science, pp.208-238, The national academies press, 2012.
  16. S. Dikmen, E. Alava, E. Pontes, J. M. Fear, B. Y. Dikmen, T. A. Olson, P. J. Hansen, "Differences in thermoregulatory ability between slick-haired and wild-type lactating Holstein cows in response to acute heat stress", Journal of dairy science, Vol.91, No.9, pp.3395-3402, 2008. DOI:https://doi.org/10.3168/jds.2008-1072
  17. M. Ataallahi, J. G. Nejad, J. Takahashi, Y. Song, K. Sung, J. Yun & K. Park, "Effects of environmental changes during different seasons on hair cortisol concentration as a biomarker of chronic stress in Korean native cattle", International Journal of Agriculture and Biology, Vol.21, No.6, pp.1166-1172, 2019. DOI: https://doi.org/10.17957/IJAB/15.1007
  18. SAS. 2012, SAS Software for PC. Release 9.3, SAS Institute. Ins, Cart, NC, USA.
  19. K. Wegner, C. Lamertz, G. Das, G. Reiner, M. Gauly, "Effects of temperature and temperature-humidity index on the reproductive performance of sows during summer months under a temperate climate", Animal Science Journal, Vol.87, No.11, pp.1334-1339, 2016. https://onlinelibrary.wiley.com/doi/full/10.1111/asj.12569
  20. N. Quiniou & J. Noblet, "Influence of high ambient temperatures on performance of multiparous lactating sows", Journal of animal science, Vol.77, No.8, pp.2124-2134, 1999. DOI: https://doi.org/10.2527/1999.7782124x
  21. D. Renaudeau, N. Quiniou & J. Noblet, "Effects of exposure to high ambient temperature and dietary protein level on performance of multiparous lactating sows", Journal of Animal Science, Vol.79, No.5, pp.1240-1249, 2001. DOI: https://doi.org/10.2527/2001.7951240x
  22. M. Barbari & L. Conti, "Use of different cooling systems by pregnant sows in experimental pen", Biosystems engineering, Vol.103, No.2, pp.239-244, 2009. DOI: https://doi.org/10.1016/j.biosystemseng.2009.02.016
  23. J. Perin, T. S. Gaggini, S. Manica, D. Magnabosco, M. L. Bernardi, I. Wentz & F. P. Bortolozzo, "Evaporative snout cooling system on the performance of lactating sows and their litters in a subtropical region", Ciencia Rural, Vol.46, No.2, pp.342-347, 2016. DOI: https://doi.org/10.1590/0103-8478cr20141693
  24. W. F. Stansbury, J. J. McGlone & L. F. Tribble, "Effects of season, floor type, air temperature and snout coolers on sow and litter performance", Journal of Animal Science, Vol.65, No.6, pp.1507-1513, 1987. DOI: https://doi.org/10.2527/jas1987.6561507x
  25. J. J. McGlone, W. F. Stansbury & L. F. Tribble, "Management of lactating sows during heat stress: effects of water drip, snout coolers, floor type and a high energy-density diet", Journal of Animal Science, Vol.66, No.4, pp885-891, 1988. DOI: https://doi.org/10.2527/jas1988.664885x
  26. D. L. Raap, D. P. Froehlich, J. L. Julson & R. Woerman, "Zone and drip cooling comparisons for lactating swine", Transactions of the ASAE, Vol.31, No.6, pp.1774-1781, 1988. DOI: https://doi.org/10.13031/2013.30934
  27. O. E. dos Santos Morales, M. A. D. Goncalves, A. A. Storti, M. L. Bernardi, I. Wentz & F. P. Bortolozzo, "Effect of different systems for the control of environmental temperature on the performance of sows and their litters", Acta Scientiae Veterinariae, Vol.41, No.1, pp.1-7, 2013.
  28. T. T. T. Huynh, A. J. A. Aarnink, W. J. J. Gerrits, M. J. H. Heetkamp, T. T. Canh, H. A. M. Spoolder & M. W. A. Verstegen, "Thermal behaviour of growing pigs in response to high temperature and humidity", Applied animal behaviour science, Vol.91, No.1-2, pp.1-16, 2005. DOI: https://doi.org/10.1016/j.applanim.2004.10.020
  29. D. Elez, S. Vidovic & G. Matic, "The influence of hyperthermic stress on the redox state of glucocorticoid receptor", Stress, Vol.3, No.3, pp.247-255, 2000. DOI: http://dx.doi.org/10.3109/10253890009001129
  30. K. Z. Mahmoud, F. W. Edens, E. J. Eisen & G. B. Havenstein, "Ascorbic acid decreases heat shock protein 70 and plasma corticosterone response in broilers (Gallus gallus domesticus) subjected to cyclic heat stress", Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Vol.137, No.1, pp.35-42, 2004. DOI: http://doi.org/10.1016/j.cbpc.2003.09.013
  31. J. Quinonero, C. Garcia-Santamaria, E. Maria-Dolores & E. Armero, "Physiological indicators of stress in gestating sows under different cooling systems", Pesquisa Agropecuaria Brasileira, Vol.44, No.11, pp.1549-1552, 2009. DOI: https://doi.org/10.1590/S0100-204X2009001100025
  32. J. S. Johnson, M. A. Aardsma, A. W. Duttlinger & K. R. Kpodo, "Early life thermal stress: impact on future thermotolerance, stress response, behavior, and intestinal morphology in piglets exposed to a heat stress challenge during simulated transport", Journal of Animal Science, Vol.96, No.5, pp.1640-1653, 2018. DOI: https://doi.org/10.1093/jas/sky107
  33. D. Renaudeau, J. L. Gourdine & N. R. St-Pierre, "A meta-analysis of the effects of high ambient temperature on growth performance of growing-finishing pigs", Journal of Animal Science, Vol.89, No.7, pp.2220-2230, 2011. DOI: https://doi.org/10.2527/jas.2010-3329
  34. R. Machado-Neto, C. N. Graves & S. E. Curtis, "Immunoglobulins in piglets from sows heat-stressed prepartum", Journal of Animal Science, Vol.65, No.2, pp.445-455, 1987. DOI: https://doi.org/10.2527/jas1987.652445x
  35. J. D. Spencer, R. D. Boyd, R. Cabrera & G. L. Allee, "Early weaning to reduce tissue mobilization in lactating sows and milk supplementation to enhance pig weaning weight during extreme heat stress", Journal of Animal Science, Vol.81, No.8, pp.2041-2052, 2003. DOI: https://doi.org/10.2527/2003.8182041x
  36. A. M. Williams, T. J. Safranski, D. E. Spiers, P. A. Eichen, E. A. Coate & M. C. Lucy, "Effects of a controlled heat stress during late gestation, lactation, and after weaning on thermoregulation, metabolism, and reproduction of primiparous sows", Journal of animal science, Vol.91, No.6, pp.2700-2714, 2013. DOI: https://doi.org/10.2527/jas.2012-6055
  37. D. Godyn, P. Herbut & S. Angrecka, "Impact of Fogging System on Thermal Comfort of Lactating Sows", Transactions of the ASABE, Vol.61, No.6, pp.1933-1938, 2018. DOI: http://dx.doi.org/10.13031/trans.12814
  38. C. E. B. Romanini, Y. B. Tolon, I. D. A. Naas & D. J. D. Moura, "Physiological and productive responses of environmental control on housed sows", Scientia Agricola, Vol.65, No.4, pp.335-339, 2008. DOI: http://dx.doi.org/10.1590/S0103-90162008000400002
  39. P. H. Watanabe, T. A. Azevedo, M. A. do Nascimento Silva, N. M. Oliveira, T. R. Gomes, T. S. Andrade & J. A. D. Barbosa Filho, "Cooling ventilation at farrowing for sows from first to third parturition", Comunicata Scientiae, Vol.9, No.4, pp.556-564, 2018. DOI: https://doi.org/10.14295/cs.v9i4.1098
  40. E. Justino, I. D. A. Naas, T. M. Carvalho, D. P. Neves & D. D. A. Salgado, "The impact of evaporative cooling on the thermoregulation and sensible heat loss of sows during farrowing", Engenharia Agricola, Vol.34, No.6, pp.1050-1061, 2014. DOI: https://doi.org/10.1590/S0100-69162014000600003