DOI QR코드

DOI QR Code

Heat Transfer Coefficients of Concentric Annuli for Testing Heat Transfer Characteristics of Alternative Refrigerants in Tubes

대체냉매 관내 열전달특성 시험을 위한 동심이중원관의 환상유로의 열전달계수

  • KIM, MAN-HOE (School of Mechanical Engineering & IEDT, Kyungpook National University)
  • 김만회 (경북대학교 기계공학부, 공학설계연구소)
  • Received : 2020.12.18
  • Accepted : 2021.02.28
  • Published : 2021.02.28

Abstract

Accurate measurements of the heat transfer coefficients of concentric annular space for the test section is important to measure the tube-side heat transfer coefficients of working fluids. This paper presents the annular side heat transfer coefficients of concentric annuli with variation of tube diameter ratios using Wilson plot method. The test facility has a straight, horizontal test section with an active length of 3.0 m. Inner/outer diameters of test tubes are 7.0/7.5 and 8.0/8.56 mm, respectively. An outer diameter of annulus side is 16.0 mm. The test results show that convective heat transfer coefficients in annuli increase with annular diameter ratio. The correlations for convective heat transfer coefficients in annuli are also developed.

Keywords

References

  1. M. H. Kim, J. Pettersen, and C. W. Bullard, "Fundamental process and system design issues in CO2 vapor compression systems", Progress in Energy and Combustion Science, Vol. 30, No. 2, 2004, pp. 119-174, doi: https://doi.org/10.1016/j.pecs.2003.09.002.
  2. E. Lemmon, M. Mc Linden, M. Huber, and M. O. McLinden, "Reference fluid thermodynamic and transport properties: REFPROP version 10.0", NIST Standard Reference Database 23, 2018.
  3. R. L. Webb and N. H. Kim, "Principles of enhanced heat transfer", 2nd ed, Taylor & Francis, UK, 2005, pp. 569-571, doi: https://doi.org/10.1201/b12413.
  4. M. H. Kim and J. S. Shin, "Evaporating heat transfer of R22 and R410A in horizontal smooth and microfin tubes R22 et R410A", International Journal of Refrigeration, Vol. 28, No. 6, 2005, pp. 940-948, doi: https://doi.org/10.1016/j.ijrefrig.2005.01.016.
  5. E. E. Wilson, "A basis for rational design of heat transfer apparatus", ASME Trans. Vol. 37, 1915, pp. 47-82.
  6. D. E. Briggs and E. H. Young, "Modified Wilson plot techniques for obtaining heat transfer correlations for shell and tube heat exchangers", ASME Trans. J. of Heat Transfer, Vol. 5, 1969, pp. 51-56.
  7. J. Fernandez-Seara, F. J. UhiLa, J. Sieres, and A. Campo, "A general review of the Wilson plot method and its modifications to determine convection coefficients in heat exchange devices," Applied Thermal Engineering, Vol. 27, No. 17-18, 2007, pp. 2745-2757, doi: https://doi.org/10.1016/j.applthermaleng.2007.04.004.
  8. T. B. Styrylska and A. A. Lechowska, "Unified Wilson plot method for determining heat transfer correlations for heat exchangers", J. Heat Transfer., Vol. 125, No. 4, 2003, pp. 752-756, doi: https://doi.org/10.1115/1.1576810.
  9. E. Rooyen, M. Christians, and J. R. Thome, "Modified Wilson plots for enhanced heat transfer experiments: current status and future perspectives", Heat Transfer Engineering, Vol. 33, No. 4-5, 2012, pp. 342-355, doi: https://doi.org/10.1080/01457632.2012.611767.
  10. J. Dirker and J. P. Meyer, "Heat transfer coefficients in concentric annuli", ASME Traans. J. of Heat Transfer, Vol. 124, No. 6, 2002, pp. 1200-1203, doi: http://dx.doi.org/10.1115/1.1517266.
  11. J. W. Rose, "Heat-transfer coefficients, Wilson plots and accuracy of thermal measurements", Experimental Thermal and Fluid Science, Vol. 28, No. 2-3, 2004, pp. 77-86, doi: https://doi.org/10.1016/S0894-1777(03)00025-6.