DOI QR코드

DOI QR Code

Computer modeling to forecast accurate of efficiency parameters of different size of graphene platelet, carbon, and boron nitride nanotubes: A molecular dynamics simulation

  • Farazin, Ashkan (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2020.08.14
  • Accepted : 2021.01.14
  • Published : 2021.02.25

Abstract

In the present work, an extensive study for predicting efficiency parameters (��i) of various simulated nanocomposites including Polymethyl methacrylate (PMMA) as matrix and different structures including various sizes of graphene platelets (GPLs), single, double, and multi-walled carbon nanotubes (SWCNTs-DWCNTs-MWCNTs), and single and double-walled boron nitride nanotubes (SWBNNTs-DWBNNTs) are investigated. It should be stated that GPLs, carbon and boron nitride nanotubes (CNTs, BNNT) with different chiralities (5, 0), (5, 5), (10, 0), and (10, 10) as reinforcements are considered. In this research, molecular dynamics (MDs) method with Materials studio software is applied to examine the mechanical properties (Young's modulus) of simulated nanocomposite boxes and calculate η1 of each nanocomposite boxes. Then, it is noteworthy that by changing length (6.252, 10.584, and 21.173 nm) and width (7.137, 10.515, and 19.936) of GPLs, ��1, ��2, and ��3 approximately becomes (0.101, 0.114, and 0.124), (1.15, 1.22, and 1.26), (1.04, 1.05, and 1.07) respectively. After that efficiency parameters of SWCNTs, DWCNTs, and MWCNTs are calculated and discussed separately. Finally efficiency parameters of SWBNNTs and DWBNNTs with different chiralities by PMMA as matrix are determined by MD and discussed separately. It is known that the accurate efficiency parameters helps a lot to calculate the properties of nanocomposite analytically. In particular, the obtained results from this research can be used for analytical work based on the extended rule of mixture (ERM) in bending, buckling and vibration analysis of structure in future study.

Keywords

References

  1. Abdelrazek, E.M., Hezma, A.M., El-khodary, A. and Elzayat, A.M. (2016), "Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend", Egypt. J. Basic Appl. Sci., 3(1), 10-15. https://doi.org/10.1016/j.ejbas.2015.06.001.
  2. AkhavanAlavi, S.M., Mohammadimehr, M. and Edjtahed, S.H. (2019), "Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method", Eur. J. Mech. A/Solid., 74, 449-461. https://doi.org/10.1016/j.euromechsol.2018.12.008.
  3. Ahmad, S., Nadeem, S., Muhammad, N. and Issakhov, A. (2020), "Radiative SWCNT and MWCNT nanofluid flow of Falkner-Skan problem with double stratification", Physica A: Stat. Mech. Its Appl., 547. https://doi.org/10.1016/j.physa.2019.124054.
  4. Amini, A., Mohammadimehr, M. and Faraji, A.R. (2019), "Active control to reduce the vibration amplitude of the solar honeycomb sandwich panels with CNTRC facesheets using piezoelectric patch sensor and actuator", Steel Compos. Struct., 32(5), 671-686. https://doi.org/10.12989/scs.2019.32.5.671.
  5. Ansari, R., Torabi, J. and Hosein Shakouri, A. (2017), "Vibration analysis of functionally graded carbon nanotube-reinforced composite elliptical plates using a numerical strategy", Aerosp. Sci. Tech., 60, 152-161. https://doi.org/10.1016/j.ast.2016.11.004.
  6. Aqel, A., El-Nour, K.M.M.A., Ammar, R.A.A. and Al-Warthan, A. (2012), "Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation", Arab. J. Chem., 5(1), 1-23. https://doi.org/10.1016/j.arabjc.2010.08.022.
  7. Babaeeian, M. and Mohammadimehr, M. (2020), "Investigation of the time elapsed effect on residual stress measurement in a composite plate by DIC method", Opt. Laser. Eng., 128, 106002. https://doi.org/10.1016/j.optlaseng.2020.106002.
  8. Bastrakov, S., Meyerov, I., Gergel, V., Gonoskov, A., Gorshkov, A., Efimenko, E., Ivanchenko, M., Kirillin, M., Malova, A., Osipov, G., Petrov, V., Surmin, I. and Vildemanov, A. (2013), "High performance computing in biomedical applications", Procedia Comput. Sci., 18, 10-19. https://doi.org/10.1016/j.procs.2013.05.164.
  9. Behfar, K. and Naghdabadi, R. (2005), "Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium", Compos. Sci. Technol., 65(7-8), 1159-1164. https://doi.org/10.1016/j.compscitech.2004.11.011.
  10. Belhamra, S., Masrour, R. and Jabar, A. (2020), "Magnetic and thermodynamic properties of thin films superlattice: A Monte Carlo study", Thin Solid Film., 711, 138304. https://doi.org/10.1016/j.tsf.2020.138304.
  11. Belza, T., Pavlinek, V., Saha, P., Benes, M.J., Horak, D. and Quadrat, O. (2007), "Electrorheology of silicone oil suspensions of urea-modified poly[(glycidyl methacrylate)-co-(ethylene dimethacrylate)] particles", Physica A: Stat. Mech. Its Appl., 385(1), 1-8. https://doi.org/10.1016/j.physa.2007.06.042.
  12. Bobinski, J. and Tejchman, J. (2004), "Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity", Comput. Concrete, 1(4), 433-455. https://doi.org/10.12989/cac.2004.1.4.433.
  13. Chandran, R. and Gifty Honeyta A.M. (2017), "Simplified equation for Young's modulus of CNT reinforced concrete", AIP Adv., 7(12), 125122. https://doi.org/10.1063/1.5011319.
  14. Coleman, J.N., Khan, U., Blau, W.J. and Gunko, Y.K. (2006), "Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites", Carbon, 44(9), 1624-1652. https://doi.org/10.1016/j.carbon.2006.02.038.
  15. Deng, L., Eichhorn, S.J., Kao, C.C. and Young, R.J. (2011), "The effective young's modulus of carbon nanotubes in composites", ACS Appl. Mater. Interf., 3(2), 433-440. https://doi.org/10.1021/am1010145.
  16. Du, J.H., Bai, J. and Cheng, H.M. (2007), "The present status and key problems of carbon nanotube based polymer composites", Exp. Polym. Lett., 1(5), 253-273. https://doi.org/10.3144/expresspolymlett.2007.39.
  17. Du, Y., Huang, L., Wang, Y., Yang, K., Zhang, Z., Wang, Y., Kipper, M.J., Belfiore, L.A. and Tang, J. (2020), "Preparation of graphene oxide/silica hybrid composite membranes and performance studies in water treatment", J. Mater. Sci., 1-15. https://doi.org/10.1007/s10853-020-04774-5.
  18. Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., 7(2), 109. http://dx.doi.org/10.12989/anr.2019.7.2.109.
  19. Farazin, A., Aghadavoudi, F., Motififard, M., Saber-Samandari, S. and Khandan, A. (2020), "Nanostructure, molecular dynamics simulation and mechanical performance of PCL membranes reinforced with antibacterial nanoparticles", J. Appl. Comput. Mech., 27, 100-111. https://doi.org/10.22055/JACM.2020.32902.2097.
  20. Farazin, A., Aghdam, H.A., Motififard, M., Aghadavoudi, F., Kordjamshidi, A., Saber-Samandari, S., Esmaeili, S. and Khandan, A. (2019), "A polycaprolactone bio-nanocomposite bone substitute fabricated for femoral fracture approaches: Molecular dynamic and micro-mechanical investigation", J. Nanoanalys., 6(3), 172-184. https://doi.org/10.22034/JNA.2019.668028.
  21. Farazin, A. and Mohammadimehr, M. (2020), "Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: a molecular dynamics simulation", Adv. Nano Res., 9(2), 83-90. http://dx.doi.org/10.12989/anr.2020.9.2.083.
  22. Fletcher-Woods, J., Noble, J. and Balfour, L. (2017), "The effect on dynamic steel tube umbilical fatigue performance associated with designing for elevated temperature", ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers Digital Collection. June.
  23. Frankland, S. (2003), "The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation", Compos. Sci. Technol., 63(11), 1655-1661. https://doi.org/10.1016/S0266-3538(03)00059-9.
  24. Ghavamian, A., Rahmandoust, M. and Ochsner, A. (2013), "On the determination of the shear modulus of carbon nanotubes", Compos. Part B: Eng., 44(1), 52-59. https://doi.org/10.1016/j.compositesb.2012.07.040.
  25. Ghorbanpour Arani, A., BabaAkbar Zarei, H., Eskandari, M. and Pourmousa, P. (2019a), "Vibration behavior of visco-elastically coupled sandwich beams with magnetorheological core and three-phase carbon nanotubes/fiber/polymer composite facesheets subjected to external magnetic field", J. Sandw. Struct. Mater., 21(7), 2194-2218. https://doi.org/10.1177/1099636217743177.
  26. Ghorbanpour Arani, A., Emdadi, M., Ashrafi, H., Mohammadimehr, M., Niknejad, S., Ghorbanpour Arani, A.A. and Hosseinpour, A. (2019b), "Analysis of viscoelastic functionally graded sandwich plates with CNT reinforced composite face sheets on viscoelastic foundation", J. Solid Mech., 11(4), 690-706. https://doi.org/10.22034/JSM.2019.668608.
  27. Ghorbanpour Arani, A., Rousta Navi, B. and Mohammadimehr, M. (2016), "Surface stress and agglomeration effects on nonlocal biaxial buckling polymeric nanocomposite plate reinforced by CNT using various approaches", Adv. Compos. Mater., 25(5), 423-441. https://doi.org/10.1080/09243046.2015.1052189.
  28. Griebel, M. and Hamaekers, J. (2007), "Molecular dynamics simulations of boron-nitride nanotubes embedded in amorphous Si-B-N", Comput. Mater. Sci., 39(3), 502-517. https://doi.org/10.1016/j.commatsci.2006.06.013.
  29. Grujicic, M., Cao, G. and Singh, R. (2003), "The effect of topological defects and oxygen adsorption on the electronic transport properties of single-walled carbon-nanotubes", Appl. Surf. Sci., 211(1-4), 166-183. https://doi.org/10.1016/S0169-4332(03)00224-1.
  30. Habasaki, J. (2019), "Heterogeneous-homogeneous transition and anomaly of density in SPC/E water examined by molecular dynamics simulations", Physica A: Stat. Mech. Its Appl., 527, 121391. https://doi.org/10.1016/j.physa.2019.121391.
  31. Hadipeykani, M., Aghadavoudi, F. and Toghraie, D. (2020), "A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: A statistical study", Physica A: Stat. Mech. Its Appl., 123995. https://doi.org/10.1016/j.physa.2019.123995.
  32. Hadizadeh Kheirkhah, A., Saeivar Iranizad, E., Raeisi, M. and Rajabpour, A. (2014), "Mechanical properties of hydrogen functionalized graphene under shear deformation: A molecular dynamics study", Solid State Commun., 177, 98-102. https://doi.org/10.1016/j.ssc.2013.10.004.
  33. Haghighi, M., Khodadadi, A., Golestanian, H. and Aghadavoudi, F. (2020), "Effects of defects and functional groups on graphene and nanotube thermoset epoxy-based nanocomposites mechanical properties using molecular dynamics simulation", Polym. Polym. Compos., 0967391120929075. https://doi.org/10.1177/0967391120929075.
  34. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.
  35. Hanifehlou, S. and Mohammadimehr, M. (2020), "Buckling analysis of sandwich beam reinforced by GPLs using various shear deformation theories", Comput. Concrete, 25(5), 427-432. https://doi.org/10.12989/cac.2020.25.5.427.
  36. Hu, Y., Chiang, S.W., Chu, X., Li, J., Gan, L., He, Y., Li, B., Kang, F. and Du, H. (2020), "Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials", J. Mater. Sci., 1-11. https://doi.org/10.1007/s10853-020-04681-9.
  37. Hu, Z., Tong, G., Lin, D., Chen, C., Guo, H., Xu, J. and Zhou, L. (2016), "Graphene-reinforced metal matrix nanocomposites - A review", Mater. Sci. Technol. (UK), 32(9), 930-953. https://doi.org/10.1080/02670836.2015.1104018.
  38. Huckaby, D.A., Shinmi, M. and Belfi, V.A. (1989), "Exact two-phase coexistence surface for a three-component solution on a Bethe lattice", Physica A: Stat. Mech. Its Appl., 154(3), 521-528. https://doi.org/10.1016/0378-4371(89)90262-8.
  39. Ishigami, M., Sau, J.D., Aloni, S., Cohen, M.L. and Zettl, A. (2005), "Observation of the giant Stark effect in boron-nitride nanotubes", Phys. Rev. Lett., 94(5), 1-4. https://doi.org/10.1103/PhysRevLett.94.056804.
  40. Ishiyama, C. and Higo, Y. (2002), "Effects of humidity on young's modulus in poly (methyl methacrylate)", 460-465. https://doi.org/10.1002/polb.10107.
  41. Ito, A., Ayerdurai, V., Miyagawa, A., Matsumoto, A., Okada, H., Courtoux, A. and Yamaguchi, M. (2018), "Effects of residual solvent on glass transition temperature of poly(methyl methacrylate)", Nihon Reoroji Gakkaishi, 46(3), 117-121. https://doi.org/10.1678/rheology.46.117.
  42. Jabar, A. and Masrour, R. (2020a), "Magnetic properties of armchair graphene nanoribbons: A Monte Carlo study", Chin. J. Phys., 64, 1-8. https://doi.org/10.1016/j.cjph.2019.11.030.
  43. Jabar, A. and Masrour, R. (2020b), "Magnetic properties on a decorated triangular lattice: A Monte Carlo simulation", Physica A: Stat. Mech. Its Appl., 538, 122959. https://doi.org/10.1016/j.physa.2019.122959.
  44. Jabar, A. and Masrour, R. (2019), "Magnetic properties of Kekulene structure: A Monte Carlo study", Physica A: Stat. Mech. Its Appl., 514, 974-981. https://doi.org/10.1016/j.physa.2018.09.125.
  45. Jabar, A. and Masrour, R. (2016), "Magnetic properties of graphene structure: a Monte Carlo simulation", J. Superconduct. Novel Magnet., 29(5), 1363-1369. https://doi.org/10.1007/s10948-016-3417-2.
  46. Jabar, A. and Masrour, R. (2017), "Magnetic properties of a graphene with alternate layers", Superlat. Microstruct., 112, 541-553. https://doi.org/10.1016/j.spmi.2017.10.013.
  47. Jackman, H. (2012), "Mechanical properties of carbon nanotubes and nanofibers", Carbon Nanotubes and Graphene, Second Edition, Elsevier Ltd.
  48. Jefferson, A.D., Barr, B.I.G., Bennett, T. and Hee, S.C. (2004), "Three dimensional finite element simulations of fracture tests using the Craft concrete model", Comput. Concrete, 1(3), 261-284. https://doi.org/10.12989/cac.2004.1.3.261.
  49. Jiang, L. and Guo, W. (2011), "A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes", J. Mech. Phys. Solid., 59(6), 1204-1213. https://doi.org/10.1016/j.jmps.2011.03.008.
  50. Khandan, A., Saber-Samandari, S., Telloo, M., Kazeroni, Z.S., Esmaeili, S., Sheikhbahaei, E., Farazin, A., Joneidi Yekta, H. and Kamyab, B. (2020), "A mitral heart valve prototype using sustainable polyurethane polymer: Fabricated by 3D bioprinter, tested by molecular dynamics simulation", AUT J. Mech. Eng.. https://doi.org/10.22060/AJME.2020.17450.5862.
  51. Koga, K., Gao, G.T., Tanaka, H. and Zeng, X.C. (2001), "Formation of ordered ice nanotubes inside carbon nanotubes", Nature, 412(6849), 802-805. https://doi.org/10.1038/35090532.
  52. Konsta-Gdoutos, M.S. and Aza, C.A. (2014), "Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures", Cement Concrete Compos., 53, 162-169. https://doi.org/10.1016/j.cemconcomp.2014.07.003.
  53. Korayem, M.H., Sadeghzadeh, S. and Rahneshin, V. (2012), "A new multiscale methodology for modeling of single and multi-body solid structures", Comput. Mater. Sci., 63, 1-11. https://doi.org/10.1016/j.commatsci.2012.05.059.
  54. Kumar, P. and Srinivas, J. (2017), "Elastic behavior of CNT-reinforced polymer composites with discontinuities in CNT configurations", IOP Conf. Ser.: Mater. Sci. Eng., 178, 012016. https://doi.org/10.1088/1757-899X/178/1/012016.
  55. Lahiri, D., Singh, V., Benaduce, A.P., Seal, S., Kos, L. and Agarwal, A. (2011), "Boron nitride nanotube reinforced hydroxyapatite composite: Mechanical and tribological performance and in-vitro biocompatibility to osteoblasts", J. Mech. Behav. Biomed. Mater., 4(1), 44-56. https://doi.org/10.1016/j.jmbbm.2010.09.005.
  56. Lan, H., Ye, L., Zhang, S., Peng, L., Lan, H., Ye, L., Zhang, S. and Peng, L. (2013), "Transverse dielectric properties of boron nitride nanotubes by ab initio electric field calculations Transverse dielectric properties of boron nitride nanotubes by ab initio electric field calculations", Appl. Phys. Lett., 94(18), 183110. https://doi.org/10.1063/1.3129170.
  57. Li, C. and Chou, T.W. (2003a), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solid. Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8.
  58. Li, C. and Chou, T.W. (2003b), "Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces", Compos. Sci. Technol., 63(11), 1517-1524. https://doi.org/10.1016/S0266-3538(03)00072-1.
  59. Li, C. and Strachan, A. (2015), "Molecular scale simulations on thermoset polymers: A review", J. Polym. Sci. Part B: Polym. Phys., 53(2), 103-122. https://doi.org/10.1002/polb.23489.
  60. Li, W., He, D. and Bai, J. (2013), "The influence of nano/micro hybrid structure on the mechanical and self-sensing properties of carbon nanotube-microparticle reinforced epoxy matrix composite", Compos. Part A: Appl. Sci. Manuf., 54, 28-36. https://doi.org/10.1016/j.compositesa.2013.07.002.
  61. Li, X., Zhi, C., Hanagata, N., Yamaguchi, M., Bando, Y. and Golberg, D. (2013), "Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs", Chem. Commun., 49(66), 7337-7339. https://doi.org/10.1039/c3cc42743a.
  62. Liew, K.M., He, X.Q. and Wong, C.H. (2004), "On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation", Acta Materialia, 52(9), 2521-2527. https://doi.org/10.1016/j.actamat.2004.01.043.
  63. Liu, J., Yan, H. and Jiang, K. (2013), "Mechanical properties of graphene platelet-reinforced alumina ceramic composites", Ceram. Int., 39(6), 6215-6221. https://doi.org/10.1016/j.ceramint.2013.01.041.
  64. Lu, H., Zhang, X. and Knauss, W. G. (1997), "Conversion to bulk relaxation : Studies on Poly (MethyI Methacrylate) ", 18(2). https://doi.org/10.1002/pc.10275.
  65. Ma, P.C., Siddiqui, N.A., Marom, G. and Kim, J.K. (2010), "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review", Compos. Part A: Appl. Sci. Manuf., 41(10), 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003.
  66. Mahboob, M. and Islam, M.Z. (2013), "Molecular dynamics simulations of defective CNT-polyethylene composite systems", Comput. Mater. Sci., 79, 223-229. https://doi.org/10.1016/j.commatsci.2013.05.042.
  67. Masrour, R., Bahmad, L. and Benyoussef, A. (2012), "Size effect on magnetic properties of a nano-graphene bilayer structure: A Monte Carlo study", J. Magnet. Magnetic Mater., 324(23), 3991-3996. https://doi.org/10.1016/j.jmmm.2012.06.048.
  68. Masrour, R. and Jabar, A. (2018), "Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study", Physica A: Stat. Mech. Its Appl., 497, 211-217. https://doi.org/10.1016/j.physa.2017.12.141.
  69. Masrour, R. and Jabar, A. (2016), "Effect of doping of graphene structure: A Monte Carlo simulations", Superlatt. Microstruct., 98, 78-85. https://doi.org/10.1016/j.spmi.2016.08.005.
  70. Masrour, R. and Jabar, A. (2017a), "Size effect in graphene nano-islands: A Monte Carlo study", J. Comput. Electron., 16(3), 576-583. https://doi.org/10.1007/s10825-017-0990-y.
  71. Masrour, R. and Jabar, A. (2017b), "Magnetic properties of bilayer graphene armchair nanoribbons: A Monte Carlo study", J. Magnet. Magnetic Mater., 426, 225-229. https://doi.org/10.1016/j.jmmm.2016.11.098.
  72. Mehwish, N., Kausar, A. and Siddiq, M. (2014), "Advances in polymer-based nanostructured membranes for water treatment", Polym.-Plast. Technol. Eng., 53(12), 1290-1316. https://doi.org/10.1080/03602559.2014.909465.
  73. Melly, S.K., Liu, L., Liu, Y. and Leng, J. (2020), "Active composites based on shape memory polymers: overview, fabrication methods, applications, and future prospects", J. Mater. Sci., 55, 10975-11051. https://doi.org/10.1007/s10853-020-04761-w.
  74. Meng, F. (2019), "Carbon emissions efficiency and abatement cost under inter-region differentiated mitigation strategies: A modified DDF model", Physica A: Stat. Mech. Its Appl., 532, 121888. https://doi.org/10.1016/j.physa.2019.121888.
  75. Meo, M. and Rossi, M. (2006), "Prediction of Young's modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling", Compos. Sci. Technol., 66(11-12), 1597-1605. https://doi.org/10.1016/j.compscitech.2005.11.015.
  76. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020), "Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection", Comput. Concrete, 25(4), 283-291. https://doi.org/10.12989/cac.2020.25.4.283.
  77. Mohammadimehr, M., Navi, B.R. and Ghorbanpour Arani, A. (2017), "Dynamic stability of modified strain gradient theory sinusoidal viscoelastic piezoelectric polymeric functionally graded single-walled carbon nanotubes reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermo-electro-magneto-mechanical loadings", Mech. Adv. Mater. Struct., 24(16), 1325-1342. https://doi.org/10.1080/15376494.2016.1227507.
  78. Mohammadimehr, M., Mohammadimehr, M.A. and Dashti, P. (2016a), "Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic micro-plate based on surface stress and modified couple stress theories using differential quadrature method", Appl. Math. Mech., 37(4), 529-554. https://doi.org/10.1007/s10483-016-2045-9.
  79. Mohammadimehr, M., Farahi, M.J. and Alimirzaei, S. (2016b), "Vibration and wave propagation analysis of twisted micro-beam using strain gradient theory", Appl. Math. Mech. (English Edition), 37(10), 1375-1392. https://doi.org/10.1007/s10483-016-2138-9.
  80. Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Alavi, S.M.A., Alambeigi, K., Bamdad M.,, Yazdani, R. and Hanifehlou, S. (2018), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., 29(3), 405-422. https://doi.org/10.12989/scs.2018.29.3.405.
  81. Moradi-Dastjerdi, R. and Aghadavoudi, F. (2018), "Static analysis of functionally graded nanocomposite sandwich plates reinforced by defected CNT", Compos. Struct., 200, 839-848. https://doi.org/10.1016/j.compstruct.2018.05.122.
  82. Navi, B.R., Mohammadimehr, M. and Arani, A.G. (2019), "Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory", Steel Compos. Struct., 32(6), 753-767. https://doi.org/10.12989/scs.2019.32.6.753.
  83. Pakdel, A., Zhi, C., Bando, Y. and Golberg, D. (2012), "Low-dimensional boron nitride nanomaterials", Mater. Today, 15(6), 256-265. https://doi.org/10.1016/S1369-7021(12)70116-5.
  84. Pastorin, G. (2009), "Crucial functionalizations of carbon nanotubes for improved drug delivery: A valuable option?", Pharmaceut. Res., 26(4), 746-769. https://doi.org/10.1007/s11095-008-9811-0.
  85. Peddavarapu, S. and Jayendra Bharathi, R. (2018), "Dry sliding wear behaviour of AA6082-5%SiC and AA6082-5%TiB2 metal matrix composites", Mater. Today: Proc., 5(6), 14507-14511. https://doi.org/10.1016/j.matpr.2018.03.038.
  86. Peng, Q., Dai, Y., Liu, K., Luo, X., He, D., Tang, X. and Huang, G. (2020), "A novel carbon nanotube-magnesium oxide composite with excellent recyclability to efficiently activate peroxymonosulfate for Rhodamine B degradation", J. Mater. Sci., 55, 11267-11283. https://doi.org/10.1007/s10853-020-04822-0.
  87. Pirmoradian, M., Torkan, E., Zali, H., Hashemian, M. and Toghraie, D. (2020), "Statistical and parametric instability analysis for delivery of nanoparticles through embedded DWCNT", Physica A: Stat. Mech. Its Appl., 123911. https://doi.org/10.1016/j.physa.2019.123911.
  88. Rabczuk, T. (2020), "Free vibration analysis of FG-CNTRC cylindrical pressure vessels resting on pasternak foundation with various boundary conditions", Comput. Mater. Continua, 62(3), 1001-1023. https://doi.org/10.32604/cmc.2020.08052
  89. Rahman, M.M., Zainuddin, S., Hosur, M.V., Malone, J.E., Salam, M.B.A., Kumar, A. and Jeelani, S. (2012), "Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino functionalized MWCNTs", Compos. Struct., 94(8), 2397-2406. https://doi.org/10.1016/j.compstruct.2012.03.014.
  90. Rahmandoust, M. and Ayatollahi, M.R. (2016), "CNT-based nanocomposites", Characterization of Carbon Nanotube Based Composites under Consideration of Defects, 117-175. https://doi.org/10.1007/978-3-319-00251-4_4.
  91. Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376, https://doi.org/10.12989/cac.2019.23.5.361.
  92. Raju, A. and Shanmugaraja, M. (2020), "Recent researches in fiber reinforced composite materials: A review", Mater. Today: Proc. https://doi.org/10.1016/j.matpr.2020.02.141.
  93. Rapaport, D.C. and Rapaport, D.C.R. (2004), The Art of Molecular Dynamics Simulation, Cambridge University Press.
  94. Roman, C., Garcia-Morales, M., Olariu, M.A. and McNally, T. (2020), "Effect of selective distribution of MWCNTs on the solid-state rheological and dielectric properties of blends of PMMA and LDPE", J. Mater. Sci., 55(20), 8526-8540. https://doi.org/10.1007/s10853-020-04622-6.
  95. Rostami, R. and Mohammadimehr, M. (2020), "Dynamic stability and bifurcation analysis of sandwich plate with considering FG core and FG-CNTRC face sheets", J. Sandw. Struct. Mater., 109963622090976. https://doi.org/10.1177/1099636220909766.
  96. Sahdane, T., Masrour, R. and Jabar, A. (2020), "Magnetic compensation phenomena and paramagnetic behavior on coronene-Like Superlattice: A Monte Carlo study", Solid State Commun., 114138. https://doi.org/10.1016/j.ssc.2020.114138.
  97. Sadeghi, K. and Nouban, F. (2019), "An algorithm for simulation of cyclic eccentrically-loaded RC columns using fixed rectangular finite elements discretization", Comput. Concrete, 23(1), 25-36. https://doi.org/10.12989/cac.2019.23.1.025.
  98. Sahmani, S. and Aghdam, M.M. (2017), "Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory", Int. J. Mech. Sci., 131-132, 95-106. https://doi.org/10.1016/j.ijmecsci.2017.06.052.
  99. Santosh, M., Maiti, P.K. and Sood, A.K. (2009), "Elastic properties of Boron Nitride Nanotubes and their comparison with carbon Nanotubes", J. Nanosci. Nanotechnol., 9(9), 5425-5430. https://doi.org/10.1166/jnn.2009.1197.
  100. Sazali, N. (2020), "A review of the application of carbon-based membranes to hydrogen separation", J. Mater. Sci., 55, 11052- 11070. https://doi.org/10.1007/s10853-020-04829-7.
  101. Shabaze, M., Sahoo, P.K. and Guptha, V.J. (2019), "Multiscale material modelling and analysis of carbon fiber/MWCNT/epoxy composites to predict effective elastic constants", Mater. Today: Proc., 19, 521-527. https://doi.org/10.1016/j.matpr.2019.07.647.
  102. Shen, H.S. and Xiang, Y. (2014), "Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments", Compos. Struct., 111(1), 291-300. https://doi.org/10.1016/j.compstruct.2014.01.010.
  103. Shokrieh, M.M. amd Rafiee, R. (2010), "Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach", Mater. Des., 31(2), 790-795. https://doi.org/10.1016/j.matdes.2009.07.058.
  104. Srivastava, V.K. (2012), "Modeling and mechanical performance of carbon nanotube/epoxy resin composites", Mater. Des., 39, 432-436. https://doi.org/10.1016/j.matdes.2012.02.039.
  105. Su, M.D. (2005), "Theoretical study of addition reactions of heavy carbenes to carbon and boron nitride nanotubes", J. Phys. Chem. B, 109(46), 21647-21657. https://doi.org/10.1021/jp053452c.
  106. Suryavanshi, A.P., Yu, M.F., Wen, J., Tang, C. and Bando, Y. (2004), "Elastic modulus and resonance behavior of boron nitride nanotubes", Appl. Phys. Let., 84(14), 2527-2529. https://doi.org/10.1063/1.1691189.
  107. Teng, C.C., Ma, C.C.M., Huang, Y.W., Yuen, S.M., Weng, C.C., Chen, C.H. and Su, S.F. (2008), "Effect of MWCNT content on rheological and dynamic mechanical properties of multiwalled carbon nanotube/polypropylene composites", Compos. Part A: Appl. Sci. Manuf., 39(12), 1869-1875. https://doi.org/10.1016/j.compositesa.2008.09.004.
  108. To Baben, M., Music, D., Emmerlich, J. and Schneider, J.M. (2011), "Extending the rule of mixture to the sub unit-cell level", Scripta Materialia, 65(8), 735-738. https://doi.org/10.1016/j.scriptamat.2011.07.020.
  109. Tomasi, J., Mennucci, B. and Cammi, R. (2005), "Quantum mechanical continuum solvation models", Chem. Rev., 105(8), 2999-3094. https://doi.org/10.1021/cr9904009.
  110. Yan, J.W., He, J.B. and Tong, L.H. (2019). "Longitudinal and torsional vibration characteristics of boron nitride nanotubes", J. Vib. Eng. Technol., 7(3), 205-215. https://doi.org/10.1007/s42417-019-00113-4.
  111. Trivedi, S., Sharma, S.C. and Harsha, S.P. (2014), "Evaluations of Young's modulus of boron nitride nanotube reinforced nano-composites", Procedia Materials Sci., 6, 1899-1905. https://doi.org/10.1016/j.mspro.2014.07.222.
  112. Van Mien, T., Stitmannaithum, B. and Nawa, T. (2009), "Simulation of chloride penetration into concrete structures subjected to both cyclic flexural loads and tidal effects", Comput. Concrete, 6(5), 421-435. http://dx.doi.org/10.12989/cac.2009.6.5.421.
  113. Vu, T.T., Dau, T.N.N., Ly, C.T., Pham, D.C., Nguyen, T.T.N. and Pham, V.T. (2020), "Aqueous electrodeposition of (AuNPs/MWCNT-PEDOT) composite for high-affinity acetylcholinesterase electrochemical sensors", J. Mater. Sci., 1-12. https://doi.org/10.1007/s10853-020-04657-9.
  114. Wang, J., Lee, C.H. and Yap, Y.K. (2010), "Recent advancements in boron nitride nanotubes", Nanoscale, 2(10), 2028-2034. https://doi.org/10.1039/c0nr00335b.
  115. WenXing, B., ChangChun, Z. and WanZhao, C. (2004), "Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics", Physica B: Condens. Matter., 352(1-4), 156-163. https://doi.org/10.1016/j.physb.2004.07.005.
  116. Wu, H., Fahy, W.P., Kim, S., Kim, H., Zhao, N., Pilato, L., Kafi, A., Bateman, S. and Koo, J.H. (2020), "Recent developments in polymers/polymer nanocomposites for additive manufacturing", Prog. Mater. Sci., 111, 100638. https://doi.org/10.1016/j.pmatsci.2020.100638.
  117. Yue, Z., Xu, H., Yuan, G. and Pang, H. (2019), "Modeling study of knowledge diffusion in scientific collaboration networks based on differential dynamics: A case study in graphene field", Physica A: Stat. Mech. Its Appl., 524, 375-391. https://doi.org/10.1016/j.physa.2019.04.201.
  118. Zhang, B., Li, Q. and Cui, T. (2012), "Ultra-sensitive suspended graphene nanocomposite cancer sensors with strong suppression of electrical noise", Biosens. Bioelectron., 31(1), 105-109. https://doi.org/10.1016/j.bios.2011.09.046.
  119. Zhang, C.L. and Shen, H.S. (2006), "Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation", Appl. Phys. Lett., 89(8), 81904. https://doi.org/10.1063/1.2336622.
  120. Zhang, C.L. and Shen, H.S. (2008), "Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation", J. Phys. D: Appl. Phys., 41(5). https://doi.org/10.1088/0022-3727/41/5/055404.
  121. Zhang, L., Sun, X., Pan, M., Yang, X., Liu, Y., Sun, J., Wang, Q., Zheng, J., Wang, Y. and Ma, J. (2020), "Interfacial effects between carbon nanotube templates and precursors on fabricating a wall-crystallized hierarchical pore system in zeolite crystals", J. Mater. Sci., 1-15. https://doi.org/10.1007/s10853-020-04708-1.
  122. Zhao, Y., Chen, X., Park, C., Fay, C.C., Stupkiewicz, S. and Ke, C. (2014), "Mechanical deformations of boron nitride nanotubes in crossed junctions", J. Appl. Phys., 115(16), 164305. https://doi.org/10.1063/1.4872238.
  123. Zheng, X., Zhou, X., Xu, J., Zou, L., Nie, W., Hu, X., Dai, S., Qiu, Y. and Yuan, N. (2020), "Highly stretchable CNT/MnO2 nanosheets fiber supercapacitors with high energy density", J. Mater. Sci., 55(19), 8251-8263. https://doi.org/10.1007/s10853-020-04608-4.
  124. Zheng, Z., Xiao, R., Shi, H., Li, G. and Zhou, X. (2015), "Statistical regularities of Carbon emission trading market: evidence from european union allowances", Physica A: Stat. Mech. Its Appl., 426, 9-15. https://doi.org/10.1016/j.physa.2015.01.018.
  125. Zhou, W., Bai, X., Wang, E. and Xie, S. (2009), "Synthesis, structure, and properties of single-walled carbon nanotubes", Adv. Mater., 21(45), 4565-4583. https://doi.org/10.1002/adma.200901071.