DOI QR코드

DOI QR Code

Effect of Turning Characteristics of Maritime Autonomous Surface Ships on Collision Avoidance

자율운항선박의 선회특성이 충돌회피에 미치는 영향

  • Yim, Jeong-Bin (Division of Navigation Convergence Studies, Korea Maritime and Ocean University)
  • 임정빈 (한국해양대학교 항해융합학부)
  • Received : 2021.08.06
  • Accepted : 2021.12.07
  • Published : 2021.12.31

Abstract

Identifying the effect of turning characteristics on collision avoidance for Maritime Autonomous Surface Ships (MASS) can provide a key to avoid the collision of MASS. The purpose of this study was to derive a method to identify the effect of turning characteristics, which can be changed by various rudder angles and the ship's speed, on collision avoidance. The turning circle was observed using a mathematical model of a 161-meter-long ship, and it was analyzed that the turning circle had an effect on collision avoidance through numerical simulations of collision avoidance for four collision situations of two ships. The evaluation results using the two variables, the minimum relative distance between two ships and the minimum time at the minimum relative distance, demonstrated that the rudder angle has a major influence on the change of the minimum relative distance, and the ship's speed has a major influence on the change of the minimum time. The evaluation method proposed in this study was expected to be applicable to collision avoidance as a measures in remote control of MASS.

자율운항선박(Maritime Autonomous Surface Ships, MASS)의 선회특성이 충돌회피에 미치는 영향을 식별하는 것은 MASS의 충돌회피에 핵심적인 단서를 제공할 수 있다. 본 연구의 목적은 다양한 타각과 선속에 의해서 변할 수 있는 선회특성이 충돌회피에 미치는 영향을 식별하기 위한 것이다. 선회특성이 충돌회피에 미치는 영향은 전장 161 미터 선박의 수학 모델을 이용하여 선회권을 관측한 후, 네 가지 충돌조우상황에 대한 충돌회피 수치 시뮬레이션의 결과를 이용하여 분석하였다. 두 선박 사이의 최소상대거리와 최소시간을 평가 변수로 이용하여 평가한 결과, 타각은 최소상대거리의 변화에 주요한 영향을 미치고, 선박의 속력은 최소시간의 변화에 주요한 영향을 미치는 것으로 나타났다. 본 연구에서 제안한 평가 방법은 MASS의 원격제어에서 충돌회피를 하나의 방법으로 적용 가능할 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 2021년도 해양수산부 및 해양수산과학기술진흥원 연구비 지원으로 수행된 '자율운항선박 기술개발사업(20200615)'의 연구결과입니다.

References

  1. Astrom, K. J. and Kallstrom, C. G.(1976), Identification of ship steering dynamics. Automatica, Vol. 12(1), pp. 9-22. https://doi.org/10.1016/0005-1098(76)90064-9
  2. Bowditch, N.(2019), Chapter 12-The sailings in: Gerard J., Clifford, Jr., (Eds.), American Practical Navigator: An Epitome of Navigation, National Geospatial-Intelligence Agency: Springfield, Virginia, USA, pp. 193-213.
  3. ClassNK, Guidelines for Automated/Autonomous Operation on ships (Ver.1.0), January 2020, pp. 1-40.
  4. Chislett, M. S. and Strom-Tejsen, J.(1965), Planar motion mechanism tests and full-scale steering and manoeuvring predictions for a Mariner class vessel. International Shipbuilding Progress, Vol. 12(129), pp. 201-224. https://doi.org/10.3233/isp-1965-1212902
  5. Cockcroft, A. N., Alfred, N. and Lameijer, J. N. F.(2003), A guide to the collision avoidance rules: International Regulations for Preventing Collisions at Sea. Elsevier, UK.
  6. Coldwell, T. G.(1983), Marine traffic behaviour in restricted waters. J. Navig. Vol. 36, pp. 430-444. https://doi.org/10.1017/S0373463300039783
  7. DNV-GL(2018), Autonomous and remotely operated ships, DNVGL-CG-0264, September 2018, pp. 1-110.
  8. Fujii, Y. and Tanaka, K.(1971). Traffic capacity. J. Navig. Vol. 24, pp. 543-552. https://doi.org/10.1017/S0373463300022384
  9. IMO(2019), MSC.1/Circ.1604, June 2019, Interime Guidelines for MASS Trials.
  10. IMO(2002), MSC/Circ.1053, December 2002, Explanatory notes to the standards for ship manoeuvrability.
  11. IMO(2009), International Maritime Organization, 1972. Convention on the International Regulations for Preventing Collisions at Sea, [with amendments adopted from December 2009]. International Maritime Organization, London, UK.
  12. Olindersson F. and Janson, C-E.(2015), Development of software to identify and analyse marine traffic situations, MARSIM2015, Newcastle, UK.
  13. Park, D. J., Yim, J. B. and Yang, H. S.(2018), A Study on Collision Avoidance Action in the Situation of Encountering Multiple Ships by the Reserve Officer, Journal of the Korean Society of Marine Environment & Safety, Vol. 23, No. 3, pp. 346-351. https://doi.org/10.7837/kosomes.2018.24.3.346
  14. Rolls-Royce plc(2016), Remote and Autonomous Ships The next steps, AAWA Position paper, London, pp. 1-87.
  15. Szlapczynski, R. and Szlapczynska, J.(2017), Review of ship safety domains: Models and applications. Ocean Eng. Vol. 145, pp. 277-289. https://doi.org/10.1016/j.oceaneng.2017.09.020
  16. Szlapczynski, R. and Krata, P. and Szlapczynska, J.(2018), Ship domain applied to determining distances for collision avoidance manoeuvres in give-way situations, Ocean Eng. Vol. 165, pp. 43-54. https://doi.org/10.1016/j.oceaneng.2018.07.041
  17. Van Berlekom, W. B. and Goddard, T. A.(1972), Maneuvering of large tankers.
  18. VTMIS(2020), EU Operational Guidelines for Safe, Secure and Sustainable trials of Maritime Autonomous Surface Ships (MASS), pp. 1-23.
  19. Yim, J. B.(2012), Probability Based Risk Evaluation Techniques for the Small-Sizes Sea Floater, J. of Korean Navigation and Port Research, Vol. 36, No. 10, pp. 795-801. https://doi.org/10.5394/KINPR.2012.36.10.795
  20. Yim, J. B. and Yang, Y. J.(2013), Estimating Cumulative Distribution Functions with Maximum Likelihood to Sample Data Sets of a Sea Floater Model, J. of Korean Navigation and Port Research, Vol. 37, No. 5, pp. 453-462. https://doi.org/10.5394/KINPR.2013.37.5.453
  21. Yim, J. B., Kim, D. S. and Park, D. J.(2018), Modeling perceived collision risk in vessel encounter situations, Ocean Eng, Vol. 166, pp. 64-75. https://doi.org/10.1016/j.oceaneng.2018.08.003