DOI QR코드

DOI QR Code

이중편파 레이더의 강우 추정 알고리즘별 수문학적 적용성 평가

Evaluation of hydrological applicability for rainfall estimation algorithms of dual-polarization radar

  • 투고 : 2020.10.26
  • 심사 : 2020.11.13
  • 발행 : 2021.01.31

초록

최근 레이더 강우량을 수문학적으로 활용하기 위한 연구가 활발하게 진행되고 있다. 하지만 기상레이더의 경우 관측 특성상 산악 효과 등으로 인한 관측 영역의 한계로 빔의 차폐가 발생하며, 이는 강우량의 과소 추정의 원인이 된다. 이에 본 연구에서는 기상 레이더의 수문학적 활용을 위해 Hybrid Surface Rainfall (HSR)기법을 활용하여 레이더 강우를 추정하였으며, 분포형 유출모형인 GRM 모형을 활용하여 유출 해석을 수행하였다. 5개의 강우 사상에 대해 강우 보정 및 유출 모의를 수행한 결과 HSR 기법을 활용한 이중편파 레이더 강우량(Q_H_KDP)이 지상 강우량의 15% 이내의 오차를 보이며 정확성이 가장 높았으며, 이를 활용하여 유출 해석을 수행한 결과 역시 R2 0.9 이상 NRMSE가 0.8 이하, NSE 0.5 이상의 정확도를 나타내었다. 본 연구를 통하여 이중편파 레이더 강우의 적용성을 확인할 수 있었으며, 향후 레이더의 수문학적 활용에 관련된 연구에 활용성이 클 것으로 판단된다.

Recently, many studies have been conducted to use the radar rainfall in hydrology. However, in the case of weather radar, the beam is blocked due to the limitation of the observation such as mountain effect, which causes underestimation of the radar rainfall. In this study, the radar rainfall was estimated using the Hybrid Sacn Reflectivity (HSR) technique for hydrological use of weather radar and the runoff analysis was performed using the GRM model which is a distributed rainfall-runoff model. As a result of performing the radar rainfall correction and runoff simulation for 5 rainfall events, the accuracy of the dual-polarization radar rainfall using the HSR technique (Q_H_KDP) was the highest with an error within 15% of the ground rainfall. In addition, the result of runoff simulation using Q_H_KDP also showed an accuracy of R2 of 0.9 or more, NRMSE of 1.5 or less and NSE of 0.5 or more. From this study, we examined the application of the dual-polarization radar and this results can be useful for studies related to the hydrological application of dual-polarization radar rainfall in the future.

키워드

참고문헌

  1. Ahn, S.R., Jang, C.H., Kim, S.H., Han, M.S., Kim, J.H., and Kim, S.J. (2013). "Discussion for the effectiveness of radar data through distributed storm runoff modeling." Journal of the Korean Society of Agricultural Engineers, Vol. 55, No.6, pp. 19-30. https://doi.org/10.5389/KSAE.2013.55.6.019
  2. Ahn, S.R., Jung, C.G., and Kim, S.J. (2015). "A study on the effectiveness of radar rainfall by comparing with flood inundation record map using KIMSTORM (Grid-based kinematic wave storm runoff model)." Journal of Korea Water Resources Association, Vol. 48, No. 11, pp. 925-936. https://doi.org/10.3741/JKWRA.2015.48.11.925
  3. Choi, C.K., Choi, Y.S., and Kim, K.T. (2012). "Application of a distributed model for evaluating the effect of sacheonman spillway on the flood reduction in the downstream of Namgang Dam." Journal of Wetlands Research, Vol. 14, No.3, pp. 399-411. https://doi.org/10.17663/JWR.2012.14.3.399
  4. Choi, Y.S., Choi, C.K., Kim, H.S., Kim, K.T., and Kim, S. (2015). "Multi‐site calibration using a grid‐based event rainfall-runoff model: A case study of the upstream areas of the Nakdong River basin in Korea." Hydrological Processes, Vol. 29, No. 9, pp. 2089-2099. https://doi.org/10.1002/hyp.10355
  5. Choi, Y.S., Choi, C.K., and Kim, K.T. (2012). "Development of a multi-site calibration module of distributed model-the case of GRM." Journal of the Korean Association of Geographic Information Studies, Vol. 15, No. 3, pp. 103-118. https://doi.org/10.11108/kagis.2012.15.3.103
  6. Choi, Y.S., Kim, K.T., and Shim, M.P. (2010). "Discharge estimation at ungauged catchment using distributed rainfall-runoff model." Journal of Korea Water Resources Association, Vol. 43, No. 4, pp. 353-365. https://doi.org/10.3741/JKWRA.2010.43.4.353
  7. Codo, M., and Rico-Ramirez, M.A. (2018). "Ensemble radar-based rainfall forecasts for urban hydrological applications." Geosciences, Vol. 8, No. 8, p. 297. https://doi.org/10.3390/geosciences8080297
  8. Crum, T.D., and Alberty, R.L. (1993). "The WSR-88D and the WSR-88D operational support facility." Bulletin of the American Meteorological Society, Vol. 74, pp. 1669-1687. https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2
  9. Dai, Q., Rico‐Ramirez, M.A., Han, D., Islam, T., and Liguori, S. (2015). "Probabilistic radar rainfall nowcasts using empirical and theoretical uncertainty models." Hydrological Processes, Vol. 29, No. 1, pp. 66-79. https://doi.org/10.1002/hyp.10133
  10. Delrieu, G., Braud, I., Berne, A., Borga, M., Boudevillain, B., Fabry, F., Freer, J., Gaume, E., Nakakita, E., Seed, A., Tabary, P., and Uijlenhoet, R. (2009). "Weather radar and hydrology." Advances in Water Resources, Vol. 32, No. 7, pp. 969-974. https://doi.org/10.1016/j.advwatres.2009.03.006
  11. Jung, C.G., Kim, S.J., Lee, Y.G., Lee, D.Y., and Kim, S.H. (2017). "The applicability of KIMSTORM2 for flood simulation using conditional merging method and radar rain data." Journal of the Korean Society of Hazard Mitigation, Vo. 17, No. 6, pp.483-494. https://doi.org/10.9798/KOSHAM.2017.17.6.483
  12. Kang, N.R., Noh, H.S., Lee, J.S., Lim, S.H., and Kim, H.S. (2013). "Runoff simulation of an urban drainage system using radar rainfall data." Journal of Wetlands Research, Vol. 15, No. 3, pp. 413-422. https://doi.org/10.17663/JWR.2013.15.3.413
  13. Kavetski, D., Binning, P., and Sloan, S.W. (2002). "Adaptive backward Euler time stepping with truncation error control for numerical modelling of unsaturated fluid flow." International Journal for Numerical Methods in Engineering, Vol. 53, No.6, pp. 1301-1322. https://doi.org/10.1002/nme.329
  14. Kim, T.J., Lee, D.R., Jang, S.M., and Kwon, H.H. (2017). "Generation of radar rainfall data for hydrological and meteorological application (I): Bias correction and estimation of error distribution." Journal of Korea Water Resources Association, Vo. 50, No. 1, pp. 1-15. https://doi.org/10.3741/JKWRA.2017.50.1.1
  15. Korea Institute of Civil engineering and building Technology (KICT) (2018). Grid based rainfall-runoff model user's manual.
  16. Kwon, S., Jung, S.H., and Lee, G. (2015). "Inter-comparison of radar rainfall rate using constant altitude plan position indicator and hybrid surface rainfall maps." Journal of Hydrology, Vol. 531, pp. 234-247. https://doi.org/10.1016/j.jhydrol.2015.08.063
  17. Lee, J.K., Lee, M.H., Suk, M.K., and Park, H.S. (2014). "Application of the radar rainfall estimates using the hybrid scan reflectivity technique to the hydrologic model." Journal of Korea Water Resources Association, Vol. 47, No. 10, pp. 867-878. https://doi.org/10.3741/JKWRA.2014.47.10.867
  18. Lee, M., Kang, N., Kim, J., and Kim, H.S. (2018). "Estimation of optimal runoff hydrograph using radar rainfall ensemble and blending technique of rainfall-runoff models." Journal of Korea Water Resources Association, Vol. 51, No. 3, pp. 221-233. https://doi.org/10.3741/JKWRA.2018.51.3.221
  19. Maddox, R.A., Zhang, J., Gourley, J.J., and Howard, K.W. (2002). "Weather radar coverage over the contiguous United States." Weather and Forecasting, Vol. 17, No. 4, pp. 927-934. https://doi.org/10.1175/1520-0434(2002)017<0927:WRCOTC>2.0.CO;2
  20. Na, W., and Yoo, C. (2020). "Real-time bias correction of Beaslesan dual-pol radar rain rate using the dual Kalman filter." Journal of Korea Water Resources Association, Vol. 53, No. 3, pp. 201-214. https://doi.org/10.3741/JKWRA.2020.53.3.201
  21. Noh, H., Lee, D., Hwang, S., and Kang, N. (2019). "Evaluation of the uncertainty level in radar-rainfall technology in Korea: Focus on comparative analysis with the United States." Journal of the Korean Society of Hazard Mitigation, Vol. 19, No.1, pp. 35-44. https://doi.org/10.9798/kosham.2019.19.1.35
  22. Ozkaya, A., and Akyurek, Z. (2019). "Evaluating the use of biascorrected radar rainfall data in three flood events in Samsun, Turkey." Natural Hazards, Vol. 98, No. 2, pp. 643-674. https://doi.org/10.1007/s11069-019-03723-z
  23. Sebastianelli, S., Russo, F., Napolitano, F., and Baldini, L. (2010). "Comparison between radar and rain gauges data at different distances from radar and correlation existing between the rainfall values in the adjacent pixels." Hydrology And Earth System Sciences Discussions, Vol. 7, No. 4, pp. 5171-5212. https://doi.org/10.5194/hessd-7-5171-2010
  24. Shin, M.J., and Choi, Y.S. (2018). "Sensitivity analysis to investigate the reliability of the grid-based rainfall-runoff model." Water, Vol. 10, No.12, p. 1839. https://doi.org/10.3390/w10121839
  25. Weather Radar Center (WRC) (2013). Development of application of cross governmental dual-pol radar harmonization[1]. Korea Meteorological Administration.
  26. Zhang, J., Howard, K., Langston, C., Vasiloff, S., Kaney, B., Arthur, A., Cooten, V.C., Kelleher, K., Kitzmiller, D., Ding, F., Seo, D.-J., Wells, E., and Dempsey, C. (2011). "National mosaic and multi-sensor QPE (NMQ) system: Description, results, and future plans." Bulletin of the American Meteorological Society, Vol. 92, pp.1321-1338. https://doi.org/10.1175/2011BAMS-D-11-00047.1