DOI QR코드

DOI QR Code

STRUCTURE JACOBI OPERATORS AND REAL HYPERSURFACES OF TYPE(A) IN COMPLEX SPACE FORMS

  • 투고 : 2020.09.17
  • 심사 : 2020.11.26
  • 발행 : 2021.01.31

초록

Let M be a real hypersurface with almost contact metric structure (��, ξ, ��, g) in a nonflat complex space form Mn(c). We denote S and Rξ by the Ricci tensor of M and by the structure Jacobi operator with respect to the vector field ξ respectively. In this paper, we prove that M is a Hopf hypersurface of type (A) in Mn(c) if it satisfies Rξ�� = ��Rξ and at the same time satisfies $({\nabla}_{{\phi}{\nabla}_{\xi}{\xi}}R_{\xi}){\xi}=0$ or Rξ��S = S��Rξ.

키워드

참고문헌

  1. J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space. J. Reine Angew. Math. 395 (1989), 132-141.
  2. J. Berndt and H. Tamaru, Cohomogeneity one actions on non compact symmetric spaces of rank one, Trans. Amer. Math. Soc. 359 (2007), 3425-3438. https://doi.org/10.1090/S0002-9947-07-04305-X
  3. T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space. Trans. Amer. Math. Soc. 269 (1982), 481-499. https://doi.org/10.1090/S0002-9947-1982-0637703-3
  4. T. E. Cecil and P. J. Ryan, Geomytry of Hypersurrfaces, (2015), Springer.
  5. J. T. Cho and U-H. Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators. Acta Math. Hungar. 80 (1988), 155-167. https://doi.org/10.1023/A:1006585128386
  6. U-H. Ki, Certain charaterization of real hypersurfaces of type A in a nonflat complex space form. accepted in Kyungpook Math. J.
  7. U-H. Ki, I.-B. Kim and D. H. Lim, Charaterizations of real hypersurfaces of type A in a complex space form, Bull. Korean Math. Soc. 47 (2010), 1-15. https://doi.org/10.4134/BKMS.2010.47.1.001
  8. U-H. Ki, S. J. Kim and S.-B. Lee, The structure Jacobi operator on real hypersurfaces in a nonflat complex space form, Bull. Korean Math. Soc. 42 (2005), 337-358. https://doi.org/10.4134/BKMS.2005.42.2.337
  9. U-H. Ki, S. Nagai and R. Takagi, Real hypersurfaces in nonflat complex forms conserned with the structure Jacobi operator and Ricci tensor, "Topics in Almost Hermiwian Geometry and Related Field" , Proceed in honor of K.Sekigawa 60th birthday, World Scientific (2005), 140-156.
  10. U-H. Ki, S. Nagai and R. Takagi, Structure Jacobi operator of real hypersurfaces with constant scalar cuverture in a nonflat complex space form. Tokyo J. Math. 30 (2007), 441-454. https://doi.org/10.3836/tjm/1202136687
  11. U-H. Ki, S. Nagai and R. Takagi, The sturcture vector field and structure Jacobi operator of real hypersurface in nonflat complex space forms. Geom. Dedicata. 149 (2010), 161-176. https://doi.org/10.1007/s10711-010-9474-y
  12. U-H. Ki, Y. J. Suh, On real hypersurfaces of a complex form, Math. J. Okayama Univ. 32 (1990), 207-221.
  13. I.-B. Kim, D.-H. Lim and H. Song, On characterizations of Hopf hypersurfaces in a nonflat complex space form with commuting operators. Rocky Mountain. J. Math. 44 (2014), 1923-1939. https://doi.org/10.1216/RMJ-2014-44-6-1923
  14. S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space. Geom. Dedicata 20 (1986), 45-261.
  15. M. Okumura, On some real hypersurfaces of a complex projective space. Trans. Amer. Math. Soc. 212 (1973), 355-364. https://doi.org/10.2307/1998631
  16. R. Takagi, On homogeneous real hypersurfaces in a complex projective space. Osaka J. Math. 19 (1973), 495-506.
  17. R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I. J. Math. Soc. Japan 27 (1975), 43-53. https://doi.org/10.2969/jmsj/02710043
  18. R. Takagi, Real hypersurfaces in a complex projective space with constant principalcurvatures II. J. Math. Soc. Japan 27 (1975), 507-516. https://doi.org/10.2969/jmsj/02740507