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STRUCTURE JACOBI OPERATORS AND REAL

HYPERSURFACES OF TYPE(A) IN COMPLEX SPACE

FORMS

U-Hang Ki

Abstract. Let M be a real hypersurface with almost contact metric

structure (φ, ξ, η, g) in a nonflat complex space form Mn(c). We denote
S and Rξ by the Ricci tensor of M and by the structure Jacobi operator

with respect to the vector field ξ respectively. In this paper, we prove that

M is a Hopf hypersurface of type (A) in Mn(c) if it satisfies Rξφ = φRξ
and at the same time satisfies (∇φ∇ξξRξ)ξ = 0 or RξφS = SφRξ.

1. Introduction

A complex n-dimensional Kähler manifold with Kähler structure J of con-
stant holomorphic sectional curvature 4c is called a complex space form and de-
noted by Mn(c). As is well known, a connected complete and simply connected
complex space form is complex analytically isometric to a complex projective
space PnC, a complex Euclidean space C or a complex hyperbolic space HnC
if c > 0, c = 0 or c < 0, respectively.

The study of real hypersurfaces in complex projective space PnC was initi-
ated by Takagi [17], who proved that all homogeneous real hypersurfaces in PnC
could be divided into six types which are said to be of type A1, A2, B,C,D and
E. He showed also in [16] and [17] that if a real hypersurface M in PnC has two
or three distinct constant principal curvatures, then M is locally congruent to
one of the homogeneous ones of type A1, A2 or B. In particular, real hypersur-
faces of type A1, A2 and B in PnC have been studied by several authors (see,
Cecil and Ryan [3], [4] and Okumura [17]).

In the case of complex hyperbolic space HnC, Montiel and Romero started
the study of real hypersurfaces in [14] and constructed some homogeneous real
hypersurfaces in HnC which are said to be of type A0, A1 and A2. Those
hypersurfaces have a lot of nice geometric properties (see Berndt [1] and Montiel
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and Romero [15]). In 2007 Berndt and Tamaru [2] classified all homogeneous
real hypersurfaces in HnC.

Let M be a real hypersurface of type A1 or type A2 in a complex projective
space PnC or that of type A0, A1 or A2 in a complex hyperbolic space HnC.
Then M is said to be of type (A) for simplicity. By a theorem due to Okumura
[15] and to Montiel and Romero [14] we have

Theorem O-MR ([14], [15]). If the shape operator A and the structure tensor
φ commute to each other, then a real hypersurface of a complex space form
Mn(c), c 6= 0 is locally congruent to be of type (A).

Characterization problems for a real hypersurface of type (A) in a complex
space form were studied by many authors (cf. [5] ∼ [11], [13] etc.).

We denote by S and Rξ be the Ricci tensor and the structure Jacobi operator
with respect to the vector field ξ of M respectively.

To investigate of real hypersurfaces with respect to the structure Jacobi op-
erator it is a very important problem to study real hypersurfaces satisfying
Rξφ = φRξ in Mn(c).

Under the condition RξA = ARξ we know that the following theorem ([5]):

Theorem CK ([5]). Let M be a real hypersurface of Mn(c), c 6= 0. If M
satisfies Rξφ = φRξ and at the same time satisties RξA = ARξ, then M is
a Hopf hypersurface. Further M is of type (A) or a Hopf hypersurface with
g(Aξ, ξ) = 0.

In this paper we discuss real hypersurfaces satistying Rξφ = φRξ and at the
same time ∇φ∇ξξRξ = 0 in a nonflat complex space form Mn(c). From the
different point of view of Theorem CK, we give also another characterizations
of real hypersurfaces of type (A) in Mn(c) by using the Ricci tensor and the
structure Jacobi operator.

All manifolds in the present paper are assume to be connected and of class
C∞ and the real hypersurfaces supposed to be orientable.

2. Basic properties of real hypersurfaces

Let M be a real hyperusurface immersed in a complex space form Mn(c),
c 6= 0 with almost complex structure J , and N be a unit normal vector field
on M . The Riemannian connection ∇̃ in Mn(c) and ∇ in M are related by the
following formulas for any vector fields X and Y on M :

∇̃XY = ∇XY + g(AX,Y )N, ∇̃XN = −AX,

where g denotes the Riemannian metric tensor of M induced from that of Mn(c),
and A denotes the shape operator of M in the direction N .

For any vector field X tangent to M , we put
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JX = φX + η(X)N, JN = −ξ.
We call ξ the structure vector field (or the Reeb vector field) and its flow also
denoted by the same latter ξ. The Reeb vector field ξ is said to be principal if
Aξ = αξ, where α = η(Aξ).

A real hypersurface M is said to be a Hopf hypersurface if the Reeb vector
field ξ is principal. It is known that the aggregate (φ, ξ, η, g) is an almost contact
metric structure on M , that is, we have

φ2X = −X + η(X)ξ, g(φX, φY ) = g(X,Y )− η(X)η(Y ),

η(ξ) = 1, φξ = 0, η(X) = g(X, ξ)

for any vector fields X and Y on M . From Kähler condition ∇̃J = 0, and
taking account of above equations, we see that

∇Xξ = φAX, (2.1)

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ (2.2)

for any vector fields X and Y tangent to M .
Since we consider that the ambient space is of constant holomorphic sectional

curvature 4c, equations of the Gauss and Codazzi are respectively given by

R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY
−2g(φX, Y )φZ}+ g(AY,Z)AX − g(AX,Z)AY,

(2.3)

(∇XA)Y − (∇YA)X = c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ} (2.4)

for any vector fields X,Y and Z on M , where R denotes the Riemannian cur-
vature tensor of M .

In what follows, to write our formulas in convention forms, we denote by
α = η(Aξ), β = η(A2ξ), γ = η(A3ξ) and h = TrA, and for a function f we
denote by ∇f the gradient vector field of f .

From the Gauss equation (2.3), the Ricci tensor S of M is given by

SX = c{(2n+ 1)X − 3η(X)ξ}+ hAX −A2X (2.5)

for any vector field X on M , which implies

Sξ = 2c(n− 1)ξ + hAξ −A2ξ. (2.6)

Now, we put
Aξ = αξ + µW, (2.7)

where W is a unit vector field orthogonal to ξ. In the sequel, we put U = ∇ξξ,
then by (2.1) we see that U = µφW and hence U is orthogonal to W . So we
have g(U,U) = µ2. Using (2.7), it is clear that

φU = −Aξ + αξ, (2.8)

which shows that g(U,U) = β − α2. Thus it is seen that

µ2 = β − α2. (2.9)
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Making use of (2.1), (2.7) and (2.8), it is verified that

µg(∇XW, ξ) = g(AU,X), (2.10)

g(∇Xξ, U) = µg(AW,X) (2.11)

because W is orthogonal to ξ.
Now, differentiating (2.8) covariantly and taking account of (2.1) and (2.2),

we find

(∇XA)ξ = −φ∇XU + g(AU +∇α,X)ξ −AφAX + αφAX, (2.12)

which together with (2.4) implies that

(∇ξA)ξ = 2AU +∇α. (2.13)

Applying (2.12) by φ and making use of (2.11), we obtain

φ(∇XA)ξ = ∇XU + µg(AW,X)ξ − φAφAX − αAX + αg(Aξ,X)ξ, (2.14)

which connected to (2.1) and (2.13) gives

∇ξU = 3φAU + αAξ − βξ + φ∇α. (2.15)

Using (2.3), the structure Jacobi operator Rξ is given by

Rξ(X) = R(X, ξ)ξ = c{X − η(X)ξ}+ αAX − η(AX)Aξ (2.16)

for any vector field X on M , which implies that

Rξξ = 0, (2.17)

RξU = cU + αAU, RξAU = cAU + αA2U. (2.18)

Differentiating (2.16) covariantly along M and using (2.1), we find

g((∇XRξ)Y, Z) = g(∇X(RξY )−Rξ(∇XY ), Z)

= −c{η(Z)g(φAX, Y ) + η(Y )g(φAX,Z)}+ (Xα)g(AY,Z)

+ αg((∇XA)Y,Z)− η(AZ){g((∇XA)ξ, Y ) + g(AφAX, Y )}
− η(AY ){g((∇XA)ξ, Z) + g(AφAX,Z)}.

(2.19)

From (2.5) we obtain

SU = c(2n+ 1)U + hAU −A2U, (2.20)

SAξ = c{(2n+ 1)Aξ − 3αξ}+ hA2ξ −A3ξ. (2.21)

Because of (2.5) and (2.7), we also have

µSW = hA2ξ −A3ξ − α(hAξ −A2ξ) + c(2n+ 1)(Aξ − αξ). (2.22)
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3. Structure Jacobi operator of a real hypersurface

Let M be a real hypersurface in complex space form Mn(c), c 6= 0 satisfying
Rξφ = φRξ, which means that the eigenspace of Rξ is invariant by the structure
operator φ. Then by (2.16) we have

α(φAX −AφX) = g(Aξ,X)U + g(U,X)Aξ. (3.1)

We set Ω = {p ∈M : µ(p) 6= 0}, and suppose that Ω is nonvoid, that is, ξ is not
principal curvature vector on M . In the sequel, we discuss our arguments on
the open subset Ω of M unless otherwise stated. Then, it is, using (3.1), clear
that α 6= 0 on Ω. So a function λ given by β = αλ is defined. Thus, replacing
X by U in (3.1) and using (2.8), we find

α(φAU −A2ξ + αAξ) = µ2Aξ,

which connected to (2.9) yields

φAU = λAξ −A2ξ (3.2)

because α 6= 0 on Ω.
Applying by φ, we have

φA2ξ = AU + λU, (3.3)

which together with (2.7) yields

µφAW = AU + (λ− α)U. (3.4)

Since W is orthogonal to U , we see from the last equation

g(AW,U) = 0. (3.5)

If we replace X by AU in (3.1) and take account of (3.2), then we find

αφA2U − α(λA2ξ −A3ξ) = g(AU,U)Aξ, (3.6)

which enables us to obtain

g(AU,U) = γ − αλ2. (3.7)

Theorem 3.1. Let M be a real hypersurface in a complex space form Mn(c),
c 6= 0 such that Rξφ = φRξ holds on M . If it satisfies RξU = 0, then M is a
Hopf hypersurface. Furthermore, M is locally congruent to one of the following
real hypersurface of type (A) or a Hopf hypersurface with η(Aξ) = 0.

(I) In case that PnC
(A1) a tube of radius r over a hyperplane Pn−1C, 0 < r < π/2,
(A2) a tube of radius r over a totally geodesic PkC (1 ≤ k ≤ n − 2),

where 0 < r < π/2,
(T ) a tube of radius π/4 over a certain complex submanifold in PnC,

(II) In case HnC
(A0) a horosphere in HnC, i.e., a Montiel tube,
(A1) a geodesic hypersphere or a tube over a hyperplane Hn−1C,
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(A2) a tube over a totally geodesic HkC (1 ≤ k ≤ n− 2).

Proof. Since α 6= 0 on Ω, the first equation of (2.18) implies that AU = − c
αU .

Thus (3.2) reformed as A2ξ = σAξ + cξ because of (2.8), where we have put
σ = λ− c

α .
By the way, from (2.16) we have

g(RξY,AX)− g(RξX,AY )

= g(A2ξ, Y )g(Aξ,X)− g(A2ξ,X)g(Aξ, Y ) + c{g(Aξ, Y )η(X)− g(Aξ,X)η(Y )}
for any vector fields X and Y , which together with the last equation gives
RξA = ARξ. According to Theorem CK, we conclude that our assertion. This
completes the proof. �

Further, we now assume that

RξSξ = 0 (3.8)

on M . Because of (3.1), we then have RξφSξ = 0, which together with (2.6)
gives Rξφ(hAξ −A2ξ) = 0. Thus, it follows that

RξAU = (h− λ)RξU (3.9)

by virtue of (3.3). Because of (2.18) we can write (3.9) as

hAU −A2U = (λ+
c

α
)AU − c

α
(h− λ)U (3.10)

since α 6= 0 on Ω. Applying this by φ and using (2.8) and (3.2), we find

αφA2U = {α(h− λ)− c}(λAξ −A2ξ)− c(h− λ)(Aξ − αξ).
If we combine this to (3.6), then we get

αA3ξ = (αh− c)A2ξ + (γ − αhλ+ ch)Aξ + cα(λ− h)ξ. (3.11)

where we have used (3.7), which tells us that

α(hA2ξ −A3ξ) = cA2ξ + (αλh− γ − ch)Aξ + cα(h− λ)ξ. (3.12)

Tranforming this by A and making use of (3.11), we have

α(hA3ξ −A4ξ) = {λαh− γ − c2

α
}A2ξ

+ c{γ
α
− λh+

ch

α
+ α(h− λ)}Aξ + c2(λ− h)ξ.

(3.13)

From (2.21) and (3.12) we get

αSAξ = cA2ξ + {c(2n+ 1)α− γ + αλh− ch}Aξ + cα(h− λ− 3α)ξ. (3.14)

Combining (2.20) to (3.10), we find
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SU = (λ+
c

α
)AU + {c(2n+ 1) +

c

α
(λ− h)}U. (3.15)

Now, we see from (2.22) and (3.12) that

µSW = (α+
c

α
)A2ξ + {c(2n+ 1) + h(λ− α) +

1

α
(γ + ch)}Aξ

+ {c(h− λ) + c(2n+ 1)α}ξ,

which connected to (3.3) implies that

µφSW = (α+
c

α
)AU +{αλ+

cλ

α
+ c(2n+ 1) +h(λ−α)− 1

α
(γ+ ch)}U. (3.16)

Replacing X by W in (2.19), we find

g((∇WRξ)Y,Z) = (Wα)g(AY,Z)− c{η(Z)g(φAW,Y ) + η(Y )g(φAW,Z)}
+ ag((∇WA)Y,Z)− η(AZ){g((∇WA)ξ, Y ) + g(AφAW,Y )}
− η(AY ){g((∇WA)ξ, Z) + g(AφAW,Z)}.

Now, suppose that (∇φ∇ξξ)Rξ = 0. Then we have (∇WRξ)ξ = 0. Putting
Y = ξ in the last relationship, and using (2.13), we then have

αAφAW + cφAW = 0 (3.17)

because of U and W are mutually orthogonal. Because of (3.4) we can write
(3.17) as

αA2U + {α(λ− α) + c}AU + c(λ− α)U = 0. (3.18)

which together with (2.16) implies that RξAU + (λ − α)RξU = 0. Combining
this to (3.9), it follows that

(h− α)RξU = 0. (3.19)

Using above discussions we can prove the following :

Theorem 3.2. Let M be a real hypersurface of a complex space form Mn(c), c 6=
0 which satisfies Rξφ = φRξ and at the same time RξSξ = 0. If (∇φ∇ξξRξ)ξ =
0, then M is the same type as those stated in Theorem 2.1 provided that the
scalar curvature r̄ of M is satisfied r̄ − 4c(n2 − 1) ≥ 0, where S denotes the
Ricci tensor of M .

Proof. RξU 6= 0 on Ω, then we have h− α = 0 on this open subset by virtue of
(3.19). So we have

Tr(
tAA)− h2 = ‖A− hη ⊗ ξ‖2

on the subset.
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On the other hand, the scalar curvature r̄ of M is, using (2.5), given by
r̄ = 4c(n2 − 1) + h2 − Tr(tAA). Thus, it follows that

r̄ − 4c(n2 − 1) + ‖A− hη ⊗ ξ‖2 = 0.

Hence, it follows that AX = αη(X)ξ for any vector field X because we assumed
r̄ − 4c(n2 − 1) ≥ 0, which implies AU = 0 on the set. Thus, we have RξU = 0
on M because of (3.18). Therefore we arrive at the conclusion by virtue of
Theorem 2.1. This completes the proof. �

4. Real hypersurfaces satisfying RξφS = SφRξ

Theorem 4.1. Let M be a real hypersurface in a complex space form Mn(c),
(c 6= 0, n ≥ 2). If it satisfies Rξφ = φRξ and at the same time RξφS = SφRξ,
then M is the same type as that stated in Theorem 2.1, where S denotes the
Ricci tensor of M .

Proof. From the assumption

RξφS = SφRξ, (4.1)

we have RξφSξ = 0, which together with (2.6) gives Rξφ(hAξ−A2ξ) = 0. Thus,
we have (3.9) because of (3.3). Consequently (3.10) ∼ (3.16) are accomplished
on Ω.

Now, from (3.10) we have

hA2U −A3U = (λ+
c

α
)A2U − c

α
(h− λ)AU,

which together with (2.5) and (2.20) yields

SAU = ASU. (4.2)

If we take account of (2.20) and (3.9), then we obtain

RξSU = SRξU, (4.3)

where we have used (4.2), which together with (3.15) gives

RξSU = {(2n+ 1)c+ λ(h− λ)}RξU. (4.4)

On the other hand, putting X = µW in RξφSX = SφRξX and using (2.8),
we have

µRξφSW = SRξU,

or, using (4.3) and (4.4),

µRξφSW = {c(2n+ 1) + λ(h− λ)}RξU. (4.5)

If we use (3.9) and (3.16), then the left hand side of (4.5) is given by
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µRξφSW = {c(2n+ 1) + hλ− γ

α
}RξU.

Combining the last two relationships, it follows that (γ − αλ2)RξU = 0 and
hence g(AU,U)RξU = 0 by virtue of (3.7). According to Theorem 2.1, it follows
that

g(AU,U) = γ − αλ2 = 0. (4.6)

In the next place, from our assumption we have

RξφSA
2ξ = SφRξA

2ξ, (4.7)

which together with the fact hat Rξφ = φRξ and (3.3) gives

RξφSA
2ξ = SRξ(AU + λU),

or using (3.9), (4.3) and (4.4)

RξφSA
2ξ = {(2n+ 1)ch+ hλ(h− λ)}RξU. (4.8)

By the way, using (4.6) we can write (3.14) as

α(hA3ξ−A4ξ) = (λαh−αλ2− c
2

α
)A2ξ+c(λ2−λh+

ch

α
+α(h−λ))Aξ+c2(λ−h)ξ,

which together with (2.5) yields

φSA2ξ = c(2n+1)φA2ξ+(λh−λ2−(
c

α
)2)φA2ξ+{ c

α
(λ2−λh+

c

α
h)+c(h−λ)}U.

If we use (3.3) and (3.9) to this, then we obtain

RξφSA
2ξ = {c(2n+ 1)h+ h2λ− hλ2 +

c

α
(λ2 − λh) + c(h− λ)}RξU.

Comparing this with (4.8), we obtain (h − λ)(α − λ) = 0, where we used
Theorem 2.1, which enables us to obtain h − λ = 0 because α − λ 6= 0 on Ω.
According to (3.9), we obtain RξAU = 0, that is, αA2U + cAU = 0 because of
the second equation of (2.18). Hence we have g(A2U,U) = 0 by virtue of (4.6)
and thus AU = 0. So (3.2) becomes A2ξ = λAξ. Differentiating this covariantly
along Ω and taking account of (2.1), we find

g((∇XA)Aξ, Y ) + g(A(∇XA)ξ, Y ) + g(A2φAX, Y )

= (Xλ)g(Aξ, Y ) + λg((∇XA)ξ, Y ) + λg(AφAX, Y ),
(4.9)

which together with (2.13) and the fact that AU = 0 implies that

2g((∇XA)ξ, Aξ) = λ(Xα) + α(Xλ),

or, using (2.4),
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(∇ξA)Aξ =
1

2
∇β − cU.

Replacing X by ξ in (4.9) and making use of (2.13) and the fact that AU = 0,
we find

1

2
∇β = −A∇α+ λ∇α+ (ξλ)Aξ + cU,

where we have used the last relationship. If we take the inner product with U
to this, then we obtain

1

2
Uβ = λ(Uα) + cµ2, (4.10)

which shows that

α(Uλ)− λ(Uα) = 2cµ2 (4.11)

by virtue of β = αλ.
On the other hand, if we put X = Aξ in (4.9) and make use of (2.4), (2.7)

and (2.13), then we get

1

2
(A∇β − λ∇β) + (α2 + µ2)∇λ = g(Aξ,∇λ)Aξ + c(3α− 2λ)U.

If we take the inner product with U to this and make use of (4.10) and the
fact that AU = 0, then λ{α(Uλ)− λ(Uα)} = c(3α− λ)µ2, which together with
(4.11) gives c(λ − α)µ2 = 0, a contradiction. Thus, Ω is empty set. that is,
M is a Hopf hypersurface. So α is constant (see, [12]). From (3.1) we have
α(Aφ−φA) = 0 and hence Aξ = 0 or Aφ = φA. Owing to Theorem O-MR, we
arrive at the conclusion. This completes the proof.
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