참고문헌
- G.E. Andrews, The Theory of Partitions Reading, Massachusetts: Addison-Wesley Publishing Company, 1976.
- S. Balakrishnan, S. Govindarajan, and N.S. Prabhakar, On the asymptotics of higher-dimensional partitions, J.Phys. A, A45, (2012), 055001 arXiv:1105.6231.
- E.T. Bell, Exponential polynomials, Ann. of Math. 35, (1934), 258-277. https://doi.org/10.2307/1968431
- W. Fulton, Young tableaux: With applications to representation theory and geometry LMSStudent Texts 35 Cambridge University Press, Cambridge, 1997.
- J.F. Hughes and J. Shallit, On the number of multiplicative partitions, Amer. Math. Monthly, 90, (1983), 468-471. https://doi.org/10.2307/2975729
- D.E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math., 34, (1970), 709-724. https://doi.org/10.2140/pjm.1970.34.709
- D.E. Knuth, The Art of Computer Programming, 3 Sorting and Searching, 2nd ed., Addison Wesley Longman, 1998.
- Shalosh B. Ekhad and Doron Zeilberger, Computational and Theoretical Challenges On Counting Solid Standard Young Tableaux, 2012, arXiv:1202.6229v1 [math.CO].
- R.P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999.
- J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge University Press, 1992.
-
G.T. Williams, Numbers generated by the function
$e^{e^{x-1}}$ , Amer. Math. Monthly, 52, (1945), 323-327. https://doi.org/10.2307/2305292 - A. Yong, What is ... a Young tableau?, Notices Amer. Math. Soc., 54, (2007), 240-241.
- Y. Zhao, Young tableaux and the representations of the symmetric group, Harvard College Math Review, 2, (2008), 33-45.