DOI QR코드

DOI QR Code

A Study on Life Cycle Cost According to Bridge Condition

교량 상태에 따른 생애주기비용 영향 분석

  • Park, Jun-Yong (Department of Urban Infrastructure Research, Seoul Institute of Technology) ;
  • Lee, Keesei (Department of Urban Infrastructure Research, Seoul Institute of Technology)
  • 박준용 (서울기술연구원 도시인프라연구실) ;
  • 이기세 (서울기술연구원 도시인프라연구실)
  • Received : 2020.10.22
  • Accepted : 2021.02.05
  • Published : 2021.02.28

Abstract

To cope with the increasing maintenance costs due to aging, the maintenance cost was evaluated from the perspective of asset management. The maintenance cost can be predicted based on the condition of the bridge, and the life cycle cost is used as an index. In general, the condition of a bridge has a wide distribution characteristic depending on the deterioration, load, and material characteristics. In this paper, to evaluate the effect of the bridge conditions on the life cycle cost, condition prediction models were constructed considering the service life, deterioration rate, and inspection error, which are the main variables of the bridge condition and life cycle cost calculation. In addition, condition prediction models were constructed based on the distribution of the health index to estimate the upper and lower bounds of the life cycle costs that can occur in individual bridges. Life cycle cost analysis showed that the life cycle cost differed significantly according to the condition of the bridge. Accordingly, research will be needed to increase the reliability of predicting the life cycle cost of individual bridges.

노후화로 인해 급증하는 유지관리 비용에 대응하기 위하여 자산관리적 관점에서 교량의 유지관리 비용 예측은 필수적이다. 교량의 유지관리 비용 예측은 교량 상태에 기반하여 생애주기비용을 지표로 수행되며, 일반적으로 교량 상태는 열화환경, 하중조건, 재료특성 등에 따라 상당히 넓은 분포특성을 가진다. 본 논문에서는 교량 상태에 영향을 주는 변수로 사용수명, 열화속도, 점검오차를 활용하는 상태예측모델을 활용하여 교량 상태가 생애주기비용 산정에 미치는 영향을 평가하였다. 검토된 변수 중에서 점검오차가 특히 생애주기비용 산정에 상당한 영향을 미치는 것을 확인하였다. 그리고 실제 고속도로 교량의 건전도지수 분포를 기반으로 상하한을 모사하는 상태예측모델을 구축하여 개별 교량에서 발생가능한 생애주기비용의 상하한 값을 추정하였다. 상태예측모델과 연계하여 생애주기동안 발생하는 비용을 예측하기 위해 교량 건전도지수에 따른 보수보강비용 산정식을 활용하였다. 분석을 통해 교량의 상태에 따라 생애주기비용의 차이가 상당히 크게 발생함을 확인하였다. 이에 따라 기존의 평균을 모사하는 단일모델로는 효율적 관리가 어려울 수 있으므로, 향후 다양한 종류의 상태예측모델을 구축하여 교량에 따라 적합한 모델을 적용하는 등 개별 교량의 유지관리 비용 예측신뢰도를 높이기 위한 연구가 필요하다.

Keywords

References

  1. Cheol-Min Kim, Severe deterioration of major urban infrastructure in Seoul [Internet], Blog [cited 2020 Oct], Available From: https://blog.naver.com/kcm8764/221383104834
  2. KECRI, Bridge Maintenance Strategies for Service Life 100 years (Final Report), Korea Expressway Corporation Research Institute, 2015.
  3. Yo-Seok Jeong, Woo-Seok Kim, Il-Keun Lee, Jae-Ha Lee, "Bridge Life Cycle Cost Analysis of Preventive Maintenance", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 20, No. 6, pp.001-009, 2016. DOI: https://doi.org/10.11112/jksmi.2016.20.6.001
  4. Jong-Wan Sun, Huseok Lee, Kyung-Hoon Park, "Development of maintenance cost estimation method considering bridge performance changes", Jounal of the Korea Academia-Industrial cooperation Society, Vol. 19, No. 12, pp.717-724, 2018. DOI: https://doi.org/10.5762/KAIS.2018.19.12.717
  5. Korea Institute of Civil Engineering and Building Technology(KICT), Operation of bridge management system in 2016, Ministry of Land, Infrastructure and Transport, 2017.
  6. KECRI, Maintenance & Management of Expressway Bridges Deteriorated by De-icing Agent & Water Leakage, Korea Expressway Corporation Research Institute, 2016.
  7. MnDOT(2019), Transportation Asset Management Plan, Minnesota Department of Transportation, 2019.
  8. D. Macek and V. Snizek, "Innovation in Bridge Life-cycle Cost Assessment.", Procedia Engineering, 196, pp.441-446, 2017. DOI: https://doi.org/10.1016/j.proeng.2017.07.222
  9. Y. Dong, "Performance assessment and design of ultra-high performance concrete (UHPC) structures incorporating life-cycle cost and environmental impacts.", Construction and Building Materials, 167, pp.414-425, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.037
  10. Y. Yang, X. Wang, Z. Wu, "Life cycle cost analysis of FRP cables for long-span cable supported bridges.", Structures, 25, pp.24-34, 2020. DOI: https://doi.org/10.1016/j.istruc.2020.02.019
  11. Asadi, P., Nikfar, D., Hajirasouliha, I., "Life-cycle cost based design of bridge lead-rubber isolators in seismic regions.", Structures, 27, pp.383-395, 2020. DOI: https://doi.org/10.1016/j.istruc.2020.05.056
  12. O. Habibzadeh-Bigdarvish, X. Yu, G. Lei, T. Li, A. Puppala, "Life-Cycle cost-benefit analysis of Bridge deck de-icing using geothermal heat pump system: A case study of North Texas.", Sustainable Cities and Society, 47, 2019. DOI: https://doi.org/10.1016/j.scs.2019.101492
  13. Yo-Seok Jeong, Woo-Seok Kim, Il-Keun Lee, Jae-Ha Lee, Jin-Kwang Kim, "Definition, End-of-life Criterion and Prediction of Service Life for Bridge Maintenance", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 20, No. 4, pp.68-76, 2016. DOI: http://dx.doi.org/10.11112/jksmi.2016.20.4.068