DOI QR코드

DOI QR Code

Optimal design of a Linear Active Magnetic Bearing using Halbach magnet array for Magnetic levitation

자기부상용 Halbach 자석 배열을 이용한 선형 능동자기 베어링의 최적설계

  • Lee, Hakjun (Intelligent manufacturing R&D group, Korea Institute of Industrial Technology) ;
  • Ahn, Dahoon (Division of Mechanical and Automotive Engineering, Kongju National University)
  • 이학준 (한국생산기술연구원 지능형생산시스템연구부문) ;
  • 안다훈 (공주대학교 기계자동차공학부)
  • Received : 2020.10.05
  • Accepted : 2021.01.08
  • Published : 2021.01.31

Abstract

This paper presents a new structure for a linear active magnetic bearing using a Halbach magnet array. The proposed magnetic bearing consisted of a Halbach magnet array, center magnet, and single coil. The proposed linear active magnetic bearing has a high dynamic force compared to the previous study. The high dynamic force could be obtained by varying the thickness of a horizontally magnetized magnet. The new structure of Halbach linear active magnetic bearing has a high dynamic force. Therefore, the proposed linear active magnetic bearing increased the bandwidth of the system. Magnetic modeling and optimal design of the new structure of the Halbach linear active magnetic bearing were performed. The optimal design was executed on the geometric parameters of the proposed linear active magnetic bearing using Sequential Quadratic Programming. The proposed linear active magnetic bearing had a static force of 45.06 N and a Lorentz force constant of 19.54 N/A, which is higher than previous research.

본 논문은 Halbach 자석 배열을 사용하여 새로운 구조의 선형 능동자기 베어링 개발을 제시하고자 하였다. 선형 능동자기 베어링은 자석 간 발생하는 자중 보상 능력과 코일에 전류를 인가함으로서 발생하는 동적 힘을 이용하여 반도체 장비, 가공 장비 등 다양한 산업분야에서 적용되고 있다. 기존의 선형 능동자기 베어링은 크기에 비해 동적 힘이 낮은 문제점이 있다. 따라서 본 논문에서는 기존 보다 높은 동적 힘을 발휘하는 선형 능동자기 베어링을 개발하기 위해 시뮬레이션을 통해 기존 구조를 분석하고 새로운 구조를 제안하였다. 제안된 새로운 구조의 선형 능동 자기베어링을 최적화하기 위해서 모델링 및 최적 설계를 수행하였다. Sequential Quadratic Programming을 사용하여 제안된 선형 능동자기 베어링의 기하학적 설계 변수에 대해 최적의 설계가 수행되었으며, 최적설계 된 선형 능동자기 베어링의 설계성능은 정적 힘 45.063 N, 로렌츠 힘 상수 19.543 N/A 로 기존보다 높은 동적 힘을 발휘하는 것이 확인되었다.

Keywords

References

  1. G. J. P. Nijsse, Linear Motion Systems. A Modular Approach for Improved Straightness Performance, Ph.D dissertation TU Delft, Delft University of Technology, 2001, pp.59-211
  2. K.-B. Choi, Y. G. Cho, T. Shinshi, and A. Shimokohbe, "Stabilization of one degree-of-freedom control type levitation table with permanent magnet repulsive forces," Mechatronics, Vol. 13, No 6, pp. 587-603, 2003. DOI: https://doi.org/10.1016/S0957-4158(02)00032-6
  3. W. Robertson, B. Cazzolato, and A. Zander, "A multipole array magnetic spring", IEEE Transaction on Magnetics, Vol. 41, No 10, pp. 3826-3828, 2005. DOI: https://doi.org/10.1109/TMAG.2005.854981
  4. Samanta, Pranab, Phani Kumar, and N. C. Murmu. "Design and Analysis of an Electrodynamic Bearing with Magnets Arranged in Halbach Array." Proceedings of TRIBOINDIA-2018 An International Conference on Tribology. February, 2018. DOI: http://dx.doi.org/10.2139/ssrn.3328433
  5. Wang, Nianxian, et al. "Research on analytical model and design formulas of permanent magnetic bearings based on Halbach array with arbitrary segmented magnetized angle." Journal of Magnetism and Magnetic Materials, Vol. 410, pp. 257-264, 2016. DOI: https://doi.org/10.1016/j.jmmm.2016.03.040
  6. S. Hol, E. Lomonova, and A. Vandenput, "Design of a magnetic gravity compensation system," Precision engineering, Vol. 30, pp. 265-273, 2006. DOI: https://doi.org/10.1016/j.precisioneng.2005.09.005
  7. Y.-M. Choi, M. G. Lee, D.-G. Gweon, and J. Jeong, "A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage," Review of scientific instruments, Vol. 80, p. 045106, 2009. DOI: https://doi.org/10.1063/1.3116482
  8. A. Molenaar, "A novel planar magnetic bearing and motor configuration applied in a positioning stage," Ph.D dissertation TU Delft, Delft University of Technology, 2000, pp.185-198.
  9. D. C. Hanselman, Brushless permanent magnet motor design: The Writers' Collective, 2003, pp.1-191.
  10. E. P. Furlani, Permanent magnet and electromechanical devices: materials, analysis, and applications: Academic press, 2001, pp.1-513.
  11. F. Bancel, "Magnetic nodes," Journal of Physics D: Applied Physics, Vol. 32, No. 17, pp. 2155, 1999. DOI: https://doi.org/10.1088/0022-3727/32/17/304
  12. G. Akoun, and J.-P. Yonnet, "3D analytical calculation of the forces exerted between two cuboidal magnets," IEEE Transactions on magnetics, Vol. 20, No. 5, pp. 1962-1964, 1984. DOI: https://doi.org/10.1109/TMAG.1984.1063554