DOI QR코드

DOI QR Code

Leverage and Corporate Failure: Analysis of Leverage Impact according to Company Size through Survival Analysis

레버리지와 기업실패: 생존분석을 응용한 기업규모에 따른 레버리지 영향분석

  • Kim, Bong-Min (Department of Business Administration, Changwon National University) ;
  • Kim, Byoung-Gon (Department of Business Administration, Changwon National University) ;
  • Kim, Dong-Wook (Busan Economic Promotion Agency)
  • Received : 2020.08.13
  • Accepted : 2021.01.08
  • Published : 2021.01.31

Abstract

Survival analysis was used to analyze whether there is a difference in the effect of leverage on corporate failure according to the firm size. A total of 25,250 (year-company) companies listed on the Korea Stock Exchange and KOSDAQ market from 1999 to 2019 were analyzed. First, the increase in leverage generally acts as a factor that increases the possibility of corporate failure. On the other hand, the increase in the trade payable ratio lowered the possibility of failure of the company. The increase in corporate trade payable was perceived as a factor in reducing the possibility of corporate failure because it was considered the active development of business activities or active use of interest-free debt rather than leading to an increase in corporate risk. Second, a higher leverage ratio and trade payable ratio in large firms lowered the possibility of corporate failure. In the SMEs, all types of leverage increases are a factor that increases corporate failure. Overall, the effect of leverage on corporate failure differs according to the size of the company.

본 연구에서는 기업규모에 따라 레버리지가 기업실패에 미치는 영향에 차이가 있는가를 생존분석을 이용하여 분석하였다. 이를 위해 1999년부터 2019년까지 한국거래소 유가증권시장과 코스닥시장에 상장된 총 25,250개(연도-기업) 기업을 분석하였다. 레버리지의 대용변수로는 총부채지표인 레버리지비율과 단기부채지표인 매입채무와 유동부채비율, 장기부채지표인 비유동부채비율을 사용하였다. 실증분석결과 첫째, 대체로 레버리지의 증가는 기업실패 가능성을 높이는 요인으로 작용한다는 것을 확인하였다. 다만 매입채무비율의 증가는 기업의 실패 가능성을 낮춘다는 것을 확인하였다. 기업의 매입채무 증가가 기업리스크의 확대로 연결되기 보다는 활발한 영업활동의 전개나 무이자부채의 적극적인 활용으로 인식되어 기업실패 가능성을 감소시키는 요인으로 작용하는 것으로 이해되었다. 둘째, 대기업과 중소기업으로 나누어 분석한 결과, 대기업에서는 레버리지비율과 매입채무비율이 높아지면 기업실패 가능성이 낮아진다는 것을 확인하였다. 중소기업의 경우에는 모든 유형의 레버리지 증가는 기업실패 가능성을 높이는 요인이 된다는 것을 확인하였다. 중소기업에서 레버리지의 증가는 기업위험의 증가로 연결되어 기업실패 가능성을 높이는 것으로 이해할 수 있었다. 그러나 대기업의 경우는 레버리지의 증가가 기업위험으로 연결되기 보다는 레버리지효과나 활발한 사업 활동의 전개로 연결되어 기업실패 가능성을 낮추는 작용을 하는 것으로 이해할 수 있었다. 이러한 분석결과에서 레버리지가 기업실패에 미치는 영향은 기업규모에 따라 차이가 있다는 것을 확인할 수 있었다.

Keywords

References

  1. S. Y. Gwak, "An Empirical Study on Pecking Order Theory," The Korean Journal of Financial Studies, vol. 2, no. 1, pp. 89-104, 2006.
  2. D. W. Kim, M. G. Jung, B. G. Kim, "Does Asymmetric Information Affect on Capital Structure Decision?," Korean Journal of Business Adminstration, vol. 25, no. 2, pp. 767-787, 2012.
  3. Y. L. Kim, P. G. Kim, J. B. Choi, "Determinants of Capital Structure and Partial Adjustment toward Target Capital Structures," The Korean Finance Association, Joint Academic Research Presentations of 5 Academic Societies, pp. 1443-1483, 2007.
  4. R. G. Muigai, "Effect of Capital Structure on Financial Distress of Non-Financial Companies Listed in Nairobi Securities Exchange," Doctoral Dissertation, COHRED Finance, 2016.
  5. N. Outecheva, "Corporate Financial Distress : An Empirical Analysis of Distress Risk, Doctoral Dissertation," University of St. Gallen, Switzerland, 2007.
  6. O. C. Eboiyehi, F. Ikpesu, "An Empirical Investigation of Capital Structure and Tax Shield on Business Distress in Nigeria : An Application of Panel Corrected Standard Error (PCSE) Approach," Journal of Global Economics, Management and Business Research, vol. 8, no. 2, pp. 67-65, 2017.
  7. F. M. Rafiei, S. M. Manzari, S. Bostanian, "Expert Systems with Applications Financial Health Prediction Models Using Artificial Neural Networks, Genetic Algorithm and Multivariate Discriminant Analysis : Iranian Evidence," Expert Systems With Applications, vol. 38, no. 8, pp. 10210-10217, 2011. DOI: https://doi.org/10.1016/j.eswa.2011.02.082
  8. Y. John, J. D. Hilscher, J. Szilagyi, "Predicting Financial Distress and the Performance of Distressed Stocks," Journal of Investment Management, vol. 9, no. 2, pp. 14-34, 2011.
  9. J. Traczynski, "Firm Default Prediction : A Bayesian Model-Averaging Approach," Journal of Financial and Quantitative Analysis, vol. 52, no. 3, pp. 1211-1245. 2017. DOI: https://doi.org/10.1017/S002210901700031X
  10. C. A. Molina, L. A. Preve, "An Empirical Analysis of the Effect of Financial Distress on Trade Credit," Financial Management, vol. 41, no. 1, pp. 187-205, 2012. DOI: http://dx.doi.org/10.1111/j.1755-053X.2012.01182.x
  11. M. Gertler, S. Gilchrist, "The Role of Credit Market Imperfections in the Monetary Transmission Mechanism : Arguments and Evidence," Scandanavian Journal of Economics, LXCV, pp. 43-64, 1994. DOI: http://dx.doi.org/10.2307/3440134
  12. T. Beck, A. Demirgüc-Kunt, V. Maksimovic "Financing Patterns Around the World : Are Small Firms Different?," Journal of Financial Economic, vol. 89, no. 3, pp. 467-487, 2008. DOI: http://dx.doi.org/10.1016/j.jfineco.2007.10.005
  13. L. Cathcart, A. Dufour, L. Rossi, S. Varotto, "The Differential Impact of Leverage on the Default Risk of Small and Large Firms," Journal of Corporate Finance, vol. 60, no. 1, pp. 1-36, 2020. DOI: http://dx.doi.org/10.1016/j.jcorpfin.2019.101541
  14. T. Shumway, "Forecasting Bankruptcy more Accurately : A Simple Hazard Model," Journal of Business, vol. 74, no. 1, pp. 101-124, 2011. DOI: http://dx.doi.org/10.1086/209665
  15. D. R. Cox, "Regression Models and Life-Tables, Journal of the Royal Statistical Society," Series B(Methodological), vol. 34, no. 2, pp. 187-220, 1972. DOI: http://dx.doi.org/10.1007/978-1-4612-4380-9_37
  16. S. J. Koopman and A. Lucas, "Business and Default Cycles for Credit Risk," Journal of Applied Econometrics, vol. 20, no. 2, pp. 311-323, 2005. DOI: https://doi.org/10.1002/jae.833
  17. D. Bonfim, "Credit Risk Drivers: Evaluation the Contribution of Firm Level Information and of Macroeconomic Dynamics," Journal of Banking and Finance, vol. 33, no. 1, pp. 281-299, 2009. https://doi.org/10.1016/j.jbankfin.2008.08.006
  18. L. R. Gilbert, K. Menon, K. B. Schwartz, "Predicting Bankruptcy for Firms in Financial Distress," Journal of Business Finance & Accounting, vol. 17, no. 1, 1161-1171. 1990. DOI: https://doi.org/10.1111/j.1468-5957.1990.tb00555.x
  19. S. C. Gilson, "Bankruptcy, Boards, Bank, and Blockholders: Evidence on Changes in Corporate Ownership and Control When Firms Default," Journal of Financial Economics, vol. 27, no. 2, 355-387. 1990. DOI: https://doi.org/10.1016/0304-405X(90)90060-D
  20. J. C. Flagg, G. A. Giroux, C. E. Wiggins, "Predicting Corporate Bankruptcy Using Falling Firms," Review of Financial Economics, vol. 1, no. 1, 67-78, 1991. DOI: https://doi.org/10.1002/j.1873-5924.1991.tb00543.x
  21. K. G. Palepu, "Predicting takeover targets: A Methodological and Empirical Analysis," Journal of Accounting and Econometrics, vol. 8, no. 1, 3-35, 1986. DOI: https://doi.org/10.1016/0165-4101(86)90008-X
  22. R. G. Rajan, R. G. and L. Zingales, "What Do We Know about Capital Structure? Some Evidence from International Data," Journal of Finance, vol. 50, no. 5, 1421-1460, 1995. DOI: http://dx.doi.org/10.1111/j.1540-6261.1995.tb05184.x
  23. A. Lau, "A Five-state Financial Distress Prediction Model," Journal of Accounting Research, vol. 25, no. 1, 127-138, 1987. DOI: http://dx.doi.org/10.2307/2491262
  24. H. Platt, M. Platt, "Corporate Board Attributes and Bankruptcy," Journal of Business Research, vol. 65, no. 8, pp. 1139-1143, 2012. DOI: https://doi.org/10.1016/j.jbusres.2011.08.003