DOI QR코드

DOI QR Code

Discrimination of Internally Browned Apples Utilizing Near-Infrared Non-Destructive Fruit Sorting System

근적외선 비파괴 과일 선별 시스템을 활용한 내부 갈변 사과의 판별

  • Kim, Bal Geum (National Institute of Agricultural Sciences, Department of Agricultural Engineering) ;
  • Lim, Jong Guk (National Institute of Agricultural Sciences, Department of Agricultural Engineering)
  • 김밝금 (국립농업과학원 농업공학부) ;
  • 임종국 (국립농업과학원 농업공학부)
  • Received : 2020.11.24
  • Accepted : 2021.01.08
  • Published : 2021.01.31

Abstract

There is a lack of studies comparing the internal quality of fruit with its external quality. However, issues of internal quality of fruit such as internal browning are important. We propose a method of classifying normal apples and internally browned apples using a near-infrared (NIR) non-destructive system. Specifically, we found the optimal wavelength and characteristics of the spectra for determining the internal browning of Fuji apples. The NIR spectra of apples were obtained in the wavelength range of 470-1150 nm. A group of normal apples and a group of internally browned apples were identified using principal component analysis (PCA), and a partial least squares regression (PLSR) analysis was performed to develop and evaluate the discriminant model. The PCA analysis revealed a clear difference between the normal and internally browned apples. From the PLSR, the correlation coefficient of the predictive model without pretreatment was determined to be 0.902 with an RMSE value of 0.157. The correlation coefficient of the predictive model with pretreatment was 0.906 with an RMSE value of 0.154. The results show that this model is suitable for classifying normal and internally browned apples and that it can be applied for the sorting and evaluation of agricultural products for internal and external defects.

본 논문에서는 농산물 산지 유통 센터에서 설치되어 사용하고 있는 비파괴 과일 선별 시스템을 이용하여 정상 사과와 내부에 결함이 있는 사과를 판별하기 위한 최적 파장과 해당 스펙트럼의 특성을 구명하고자 하였다. 총 54개 사과에 대해 470 - 1150 nm의 파장 범위에서 정상 사과와 갈변 사과의 투과 스펙트럼을 획득하였다. 주성분 분석(PCA)을 활용하여 정상 사과와 내부 갈변 사과의 군집을 확인하였으며, 판별 모델의 개발과 평가를 위해 부분최소제곱회귀(PLSR) 분석을 수행하였다. PCA 분석에서는 정상 사과와 내부 갈변 사과 군집의 확연한 구분이 보여 높은 판별율의 결과를 보여주었다. PLSR 분석 결과, 전처리를 하지 않은 예측 모델의 상관계수(R)는 0.902, RMSE 값은 0.157이었으며, 전처리를 적용했을 때 예측 모델의 상관계수는 0.906, RMSE 값은 0.154이었다. 따라서, 이 PLSR 모델은 이 시스템을 활용해 내부 갈변이 있는 사과도 우수하게 판별할 수 있음을 알 수 있었다. 이와 같은 방식을 이용할 경우, 외부 결함과 더불어 내부 결함에 대한 농산물 선별과 평가에 적용될 수 있을 것으로 사료된다.

Keywords

References

  1. S. G. Woo, M. O. Kim, J. C. Yu, "Apple Consumer Preference Analysis", Korean Food Marketing Association, KFMA, Korea, pp.9-27, January 2013.
  2. M. S. Park, M. S. Lee, H. U. Park, Changes in Fruit Consumption Trends and Countermeasures of the Fruit Industry, Report, Korea Rural Economic Institute, Korea, pp.1.
  3. J. M. Yoon, M. H. So, C. S. Han, H. Y. Kim, "Comparision of Prediction Models of the Sugar Content for a Nondestructive Sorting System Based on Near-infrared", Proceedings of KIIT Conference, Korean Institute of Information Technology, Korea, pp.414-417, May 2014.
  4. Y. U. Seo, S. H. No, "Discriminant analysis internal quality of 'Fuji' apples using transmittance NIR spectra", Korean Society for Agricultural Machinery, KSAM, Koera, Vol.12, pp.397-401, July 2007.
  5. M. C. Jeong, G. H. Kim, G. D. Moon, J. M. Lee, Development of natural resources and processes for the inhibition of browning in fresh-cut produces, Final Report, Korea Food Research Institute, Korea, pp.27.
  6. J. Xing, C. Bravo, D. Moshou, H. Ramon, J. D. Baerdemaeker, "Bruise detection on 'Golden Delicious' apples by vis/NIR spectroscopy", Computers and Electronics in Agriculture, Vol.52, No.1-2, pp.11-20, June. 2006. DOI: https://doi.org/10.1016/j.compag.2006.01.006
  7. B. M. Nicolai, E. Lotze, A. Peirs, N. Scheerlinck, K. I. Theron, "Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging", Postharvest Biology and Technology, Vol.40, No.1, pp.1-6, April. 2006. DOI: https://doi.org/10.1016/j.postharvbio.2005.12.006
  8. Z. Wen, Y. Tao, "Dual-Camera NIR/MIR imaging for stem-imaging for stem-end/calyx identification in apple defect sorting", American Society of Agricultural and Biological Engineers, ASABE, Vol.43, pp.449-452. 2000. DOI: https://doi.org/10.13031/2013.2724
  9. P. M. Mehl, Y. R. Chen, M. S. Kim, D. E. Chan, "Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations", Journal of Food Engineering, Vol.61, No.1, pp.67-81. January. 2004. DOI: https://doi.org/10.1016/S0260-8774(03)00188-2
  10. E. J. Suh, Y. A. Woo, H. R. Lim, H. J. Kim, D. G. Moon, Y. H. Choi, "Determination of the water content in citrus leaves by portable near infrared (NIR) system", The Korean Society of Analytical Science, KISTI, Korea, Vol.16, pp.277-282, August, 2003
  11. S. Y. Yoon, J. Y. Kim, S. D. Ma, M. Y. Kim, "A Study on the Performance Characteristics of Portable Analyzer for Determination of Sugar Content in Citrus Unshiu using Near Infrared Spectroscopy", Journal of the Korean Society of Manufacturing Technology Engineers, The Korean Society of Manufacturing Technology Engineers, Korea, Vol.15, pp.1-6, Oct. 2006.
  12. Wold S, Esbensen K, Geladi P, "Principal component analysis", Chemometrics and Intelligent Laboratory Systems, Vol.2, No.1-3, pp.37-52, August. 1987. DOI: https://doi.org/10.1016/0169-7439(87)80084-9
  13. M. Zude, B. Herold, J. M. Roger, V. Bellon-Maurel, S. Landahl, "Non-destructive tests on the prediction of apple fruit flesh firmness and soluble solids content on tree and in shelf life", Journal of Food Engineering, Vol.77, No.2, pp.254-260, 2006 DOI: https://doi.org/10.1016/j.jfoodeng.2005.06.027