Abstract
For a connected graph G of order n, a set S of vertices is called a double geodetic set of G if for each pair of vertices x, y in G there exist vertices u, v ∈ S such that x, y ∈ I[u, v]. The double geodetic number dg(G) is the minimum cardinality of a double geodetic set. Any double godetic set of cardinality dg(G) is called a dg-set of G. A connected double geodetic set of G is a double geodetic set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected double geodetic set of G is the connected double geodetic number of G and is denoted by dgc(G). A connected double geodetic set of cardinality dgc(G) is called a dgc-set of G. Connected graphs of order n with connected double geodetic number 2 or n are characterized. For integers n, a and b with 2 ≤ a < b ≤ n, there exists a connected graph G of order n such that dg(G) = a and dgc(G) = b. It is shown that for positive integers r, d and k ≥ 5 with r < d ≤ 2r and k - d - 3 ≥ 0, there exists a connected graph G of radius r, diameter d and connected double geodetic number k.