DOI QR코드

DOI QR Code

A Finite Memory Structure Smoothing Filter and Its Equivalent Relationship with Existing Filters

유한기억구조 스무딩 필터와 기존 필터와의 등가 관계

  • 김민희 (한국산업기술대학교 신기술융합학과) ;
  • 김평수 (한국산업기술대학교 전자공학부)
  • Received : 2020.10.05
  • Accepted : 2020.10.22
  • Published : 2021.02.28

Abstract

In this paper, an alternative finite memory structure(FMS) smoothing filter is developed for discrete-time state-space model with a control input. To obtain the FMS smoothing filter, unbiasedness will be required beforehand in addition to a performance criteria of minimum variance. The FMS smoothing filter is obtained by directly solving an optimization problem with the unbiasedness constraint using only finite measurements and inputs on the most recent window. The proposed FMS smoothing filter is shown to have intrinsic good properties such as deadbeat and time-invariance. In addition, the proposed FMS smoothing filter is shown to be equivalent to existing FMS filters according to the delay length between the measurement and the availability of its estimate. Finally, to verify intrinsic robustness of the proposed FMS smoothing filter, computer simulations are performed for a temporary model uncertainty. Simulation results show that the proposed FMS smoothing filter can be better than the standard FMS filter and Kalman filter.

본 논문에서는 제어 입력이 있는 이산 시간 상태 공간 모델에 대한 유한기억구조(Finite Memory Structure, FMS) 스무딩 필터(Smoothing filter)를 개발한다. FMS 스무딩 필터는 가장 최근 윈도우의 유한 관측값과 제어 입력값만을 이용하여 비편향성 제약조건하에서 최소 분산 성능 지표의 최적화 문제를 직접 해결함으로써 얻어진다. FMS 스무딩 필터는 비편향성(Unbiasedness), 무진동성(Deadbeat) 및 시불변성(Time-invariance)과 같은 내재적으로 좋은 특성을 갖는다. 또한, 관측값과 추정값이 구해지는 시간 사이의 지연 길이에 따라 FMS 스무딩 필터는 기존의 FMS 필터들과 동등함을 보인다. 마지막으로, 컴퓨터 시뮬레이션을 통해 제안된 FMS 스무딩 필터의 내재적인 강인성(Robustness)을 검증하기 위해 일시적인 모델 불확실성을 가진 시스템에 FMS 스무딩 필터를 적용해본다. 시뮬레이션 결과를 통해 제안된 FMS 스무딩 필터가 기존의 FMS 필터와 칼만(Kalman) 필터보다 우수할 수 있음을 보여준다.

Keywords

References

  1. M. Grewal, "Applications of Kalman filtering in aerospace 1960 to the present," IEEE Control Systems Magazine, Vol.30, No.3, pp.69-78, 2010. https://doi.org/10.1109/MCS.2010.936465
  2. F. Auger, M. Hilairet, J. M. Guerrero, E. Monmasson, T. Orlowska-Kowalska, and S. Katsura, "Industrial applications of the Kalman filter: A review," IEEE Transactions on Industrial Electronics, Vol.60, No.12, pp.5458-5471, 2013. https://doi.org/10.1109/TIE.2012.2236994
  3. A. Barrau and S. Bonnabel, "Invariant Kalman filtering," Annual Review of Control, Robotics, and Autonomous Systems, Vol.1, No.1, pp.237-257, 2018. https://doi.org/10.1146/annurev-control-060117-105010
  4. S. Mahfouz, F. Mourad-Chehade, P. Honeine, J. Farah, and H. Snoussi, "Target tracking using machine learning and Kalman filter in wireless sensor networks," IEEE Sensors Journal, Vol.14, pp.3715-3725, 2014. https://doi.org/10.1109/JSEN.2014.2332098
  5. J. Wang, R. Zhu, and S. Liu, "A differentially private unscented Kalman filter for streaming data in IoT," IEEE Access, Vol.6, pp.6487-6495, 2018. https://doi.org/10.1109/access.2018.2797159
  6. R. Apelfrojd, "Channel estimation and prediction for 5G applications," Ph.D. dissertation, Uppsala University, Signals and Systems Group, 2018.
  7. I. Ullah, M. Fayaz, and D. Kim, "Improving accuracy of the Kalman filter algorithm in dynamic conditions using ANNbased learning module," Symmetry, Vol.11, No.1, p.94, 2019. https://doi.org/10.3390/sym11010094
  8. M. Kozdoba, J. Marecek, T. Tchrakian, and S. Mannor, "On-line learning of linear dynamical systems: Exponential forgetting in Kalman filters," in 2019 Thirty-Third AAAI Conference on Artificial Intelligence, 2019.
  9. H. Kim, P. S. Kim, and S. Lee, "A delayed estimation filter using finite observation on delay interval," IEICE Trans. Fundamentals, Vol.E91-A, No.8, pp.2257-2262, 2008. https://doi.org/10.1093/ietfec/e91-a.8.2257
  10. Y. S. Shmaliy, S. Zhao, and C. K. Ahn, "Unbiased finite impulse response filtering: An iterative alternative to Kalman filtering ignoring noise and initial conditions," IEEE Control Systems Magazine, Vol.37, No.5, pp.70-89, 2017.
  11. Y. Xu, Y. S. Shmaliy, Y. Li, X. Chen, and H. Guo, "Indoor INS/LiDAR-based robot localization with improved robustness using cascaded FIR filter," IEEE Access, Vol.7, pp.34189-34197, 2019. https://doi.org/10.1109/access.2019.2903435
  12. M. Vazquez-Olguin, Y. S. Shmaliy, and O. Ibarra-Manzano, "Distributed UFIR filtering over WSNs with consensus on estimates," IEEE Transactions on Industrial Informatics, Vol.15, 2019.
  13. P. S. Kim, "Selective finite memory structure filtering using the Chi-square test statistic for temporarily uncertain systems," Applied Sciences, Vol.9, No.20, p.4257, 2019. https://doi.org/10.3390/app9204257
  14. P. S. Kim and M. H. Kim, "Various forms of finite memory structure filter for discrete-time state-space model," in Proc. International Conference on Artificial Intelligence in information and communication (ICAIIC 2020), Fukuoka, Japan, 2020, pp.631-636.
  15. P. S. Kim, "An alternative state estimation filtering algorithm for temporarily uncertain continuous time system," Journal of Information Processing System, Vol.16, No.3, pp.588-598, 2020. https://doi.org/10.3745/JIPS.01.0055
  16. P. S. Kim, "A finite memory structure smoother with recursive form using forgetting factor," Mathematical Problems in Engineering, Vol.2017, pp.1-6, 2017.
  17. Y. S. Shmaliy, Y. Neuvo, and S. Khan, "Review of unbiased FIR filters, smoothers, and predictors for polynomial signals," Frontiers in Signal Processing, Vol.2, No.1, pp. 1-29, 2018.
  18. A. Vicente, S. Zhao, and B. Huang, "Forward-backward smoothers with finite impulse response structure," IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp.1-10, 2018.
  19. J. Mendel, "Lessons in Estimation Theory for Signal Processing, Communications, and Control." Englewood Cliffs, NJ: Prentice-Hall, 1995.
  20. B. Messner, D. Tilbury, R. Hill, and J. D. Taylor, DC Motor Speed: System Modeling: Control Tutorials for MATLAB and Simulink (CTMS). University of Michigan, 2017.