References
- M. Grewal, "Applications of Kalman filtering in aerospace 1960 to the present," IEEE Control Systems Magazine, Vol.30, No.3, pp.69-78, 2010. https://doi.org/10.1109/MCS.2010.936465
- F. Auger, M. Hilairet, J. M. Guerrero, E. Monmasson, T. Orlowska-Kowalska, and S. Katsura, "Industrial applications of the Kalman filter: A review," IEEE Transactions on Industrial Electronics, Vol.60, No.12, pp.5458-5471, 2013. https://doi.org/10.1109/TIE.2012.2236994
- A. Barrau and S. Bonnabel, "Invariant Kalman filtering," Annual Review of Control, Robotics, and Autonomous Systems, Vol.1, No.1, pp.237-257, 2018. https://doi.org/10.1146/annurev-control-060117-105010
- S. Mahfouz, F. Mourad-Chehade, P. Honeine, J. Farah, and H. Snoussi, "Target tracking using machine learning and Kalman filter in wireless sensor networks," IEEE Sensors Journal, Vol.14, pp.3715-3725, 2014. https://doi.org/10.1109/JSEN.2014.2332098
- J. Wang, R. Zhu, and S. Liu, "A differentially private unscented Kalman filter for streaming data in IoT," IEEE Access, Vol.6, pp.6487-6495, 2018. https://doi.org/10.1109/access.2018.2797159
- R. Apelfrojd, "Channel estimation and prediction for 5G applications," Ph.D. dissertation, Uppsala University, Signals and Systems Group, 2018.
- I. Ullah, M. Fayaz, and D. Kim, "Improving accuracy of the Kalman filter algorithm in dynamic conditions using ANNbased learning module," Symmetry, Vol.11, No.1, p.94, 2019. https://doi.org/10.3390/sym11010094
- M. Kozdoba, J. Marecek, T. Tchrakian, and S. Mannor, "On-line learning of linear dynamical systems: Exponential forgetting in Kalman filters," in 2019 Thirty-Third AAAI Conference on Artificial Intelligence, 2019.
- H. Kim, P. S. Kim, and S. Lee, "A delayed estimation filter using finite observation on delay interval," IEICE Trans. Fundamentals, Vol.E91-A, No.8, pp.2257-2262, 2008. https://doi.org/10.1093/ietfec/e91-a.8.2257
- Y. S. Shmaliy, S. Zhao, and C. K. Ahn, "Unbiased finite impulse response filtering: An iterative alternative to Kalman filtering ignoring noise and initial conditions," IEEE Control Systems Magazine, Vol.37, No.5, pp.70-89, 2017.
- Y. Xu, Y. S. Shmaliy, Y. Li, X. Chen, and H. Guo, "Indoor INS/LiDAR-based robot localization with improved robustness using cascaded FIR filter," IEEE Access, Vol.7, pp.34189-34197, 2019. https://doi.org/10.1109/access.2019.2903435
- M. Vazquez-Olguin, Y. S. Shmaliy, and O. Ibarra-Manzano, "Distributed UFIR filtering over WSNs with consensus on estimates," IEEE Transactions on Industrial Informatics, Vol.15, 2019.
- P. S. Kim, "Selective finite memory structure filtering using the Chi-square test statistic for temporarily uncertain systems," Applied Sciences, Vol.9, No.20, p.4257, 2019. https://doi.org/10.3390/app9204257
- P. S. Kim and M. H. Kim, "Various forms of finite memory structure filter for discrete-time state-space model," in Proc. International Conference on Artificial Intelligence in information and communication (ICAIIC 2020), Fukuoka, Japan, 2020, pp.631-636.
- P. S. Kim, "An alternative state estimation filtering algorithm for temporarily uncertain continuous time system," Journal of Information Processing System, Vol.16, No.3, pp.588-598, 2020. https://doi.org/10.3745/JIPS.01.0055
- P. S. Kim, "A finite memory structure smoother with recursive form using forgetting factor," Mathematical Problems in Engineering, Vol.2017, pp.1-6, 2017.
- Y. S. Shmaliy, Y. Neuvo, and S. Khan, "Review of unbiased FIR filters, smoothers, and predictors for polynomial signals," Frontiers in Signal Processing, Vol.2, No.1, pp. 1-29, 2018.
- A. Vicente, S. Zhao, and B. Huang, "Forward-backward smoothers with finite impulse response structure," IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp.1-10, 2018.
- J. Mendel, "Lessons in Estimation Theory for Signal Processing, Communications, and Control." Englewood Cliffs, NJ: Prentice-Hall, 1995.
- B. Messner, D. Tilbury, R. Hill, and J. D. Taylor, DC Motor Speed: System Modeling: Control Tutorials for MATLAB and Simulink (CTMS). University of Michigan, 2017.