DOI QR코드

DOI QR Code

SA-SUPPLEMENT SUBMODULES

  • Received : 2020.02.09
  • Accepted : 2020.09.15
  • Published : 2021.01.31

Abstract

In this paper, we introduced and studied sa-supplement submodules. A submodule U of a module V is called an sa-supplement submodule in V if there exists a submodule T of V such that V = T + U and U ∩ T is semiartinian. The class of sa-supplement sequences ������ is a proper class which is generated by socle-free modules injectively. We studied modules that have an sa-supplement in every extension, modules whose all submodules are sa-supplement and modules whose all sa-supplement submodules are direct summand. We provided new characterizations of right semiartinian rings and right SSI rings.

Keywords

References

  1. R. Alizade, Y. M. Demirci, Y. Durgun, and D. Pusat, The proper class generated by weak supplements, Comm. Algebra 42 (2014), no. 1, 56-72. https://doi.org/10.1080/00927872.2012.699567
  2. K. Al-Takhman, C. Lomp, and R. Wisbauer, τ-complemented and τ-supplemented modules, Algebra Discrete Math. 2006 (2006), no. 3, 1-16.
  3. M. Behboodi, A. Ghorbani, A. Moradzadeh-Dehkordi, and S. H. Shojaee, On FC-purity and I-purity of modules and Kothe rings, Comm. Algebra 42 (2014), no. 5, 2061-2081. https://doi.org/10.1080/00927872.2012.754896
  4. D. A. Buchsbaum, A note on homology in categories, Ann. of Math. (2) 69 (1959), 66-74. https://doi.org/10.2307/1970093
  5. E. Buyukasik, E. Mermut, and S. Ozdemir, Rad-supplemented modules, Rend. Semin. Mat. Univ. Padova 124 (2010), 157-177. https://doi.org/10.4171/RSMUP/124-10
  6. K. A. Byrd, Rings whose quasi-injective modules are injective, Proc. Amer. Math. Soc. 33 (1972), 235-240. https://doi.org/10.2307/2038037
  7. J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting modules, Frontiers in Mathematics, Birkhauser Verlag, Basel, 2006.
  8. Y. Durgun, Extended S-supplement submodules, Turkish J. Math. 43 (2019), no. 6, 2833-2841. https://doi.org/10.3906/mat-1907-107
  9. Y. Durgun and S. Ozdemir, On D-closed submodules, Proc. Indian Acad. Sci. Math. Sci. 130 (2020), no. 1, Paper No. 1, 14 pp. https://doi.org/10.1007/s12044-019-0537-1
  10. L. Fuchs, Neat submodules over integral domains, Period. Math. Hungar. 64 (2012), no. 2, 131-143. https://doi.org/10.1007/s10998-012-7509-x
  11. A. I. Generalov, Weak and ω-high purities in the category of modules, Mat. Sb. (N.S.) 105(147) (1978), no. 3, 389-402, 463. https://doi.org/10.1016/s0165-1765(09)00341-3
  12. D. K. Harrison, J. M. Irwin, C. L. Peercy, and E. A. Walker, High extensions of Abelian groups, Acta Math. Acad. Sci. Hungar. 14 (1963), 319-330. https://doi.org/10.1007/BF01895718
  13. Fr. Kasch, Modules and Rings, translated from the German and with a preface by D. A. R. Wallace, London Mathematical Society Monographs, 17, Academic Press, Inc., London, 1982.
  14. Fr. Kasch and E. A. Mares, Eine Kennzeichnung semi-perfekter Moduln, Nagoya Math. J. 27 (1966), 525-529. http://projecteuclid.org/euclid.nmj/1118801770 https://doi.org/10.1017/S0027763000026350
  15. T. Kepka, On one class of purities, Comment. Math. Univ. Carolinae 14 (1973), 139-154.
  16. S. Mac Lane, Homology, reprint of the 1975 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.
  17. A. P. Misina and L. A. Skornjakov, Abelian Groups and Modules, Amer. Math. Soc, Chicago-London, 1960.
  18. R. J. Nunke, Purity and subfunctors of the identity, in Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962), 121-171, Scott, Foresman and Co., Chicago, IL, 1963.
  19. J. J. Rotman, An Introduction to Homological Algebra, second edition, Universitext, Springer, New York, 2009. https://doi.org/10.1007/b98977
  20. F. L. Sandomierski, Nonsingular rings, Proc. Amer. Math. Soc. 19 (1968), 225-230. https://doi.org/10.2307/2036177
  21. E. G. Skljarenko, Relative homological algebra in the category of modules, Uspehi Mat. Nauk 33 (1978), no. 3(201), 85-120.
  22. B. T. Stenstrom, High submodules and purity, Ark. Mat. 7 (1967), 173-176 (1967). https://doi.org/10.1007/BF02591033
  23. E. Turkmen, Ukrainian Math. J. 71 (2019), no. 3, 455-469; translated from Ukrain. Mat. Zh. 71 (2019), no. 3, 400-411.
  24. R. Wisbauer, Foundations of Module and Ring Theory, revised and translated from the 1988 German edition, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.