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SA-SUPPLEMENT SUBMODULES

Yılmaz Durğun

Abstract. In this paper, we introduced and studied sa-supplement sub-

modules. A submodule U of a module V is called an sa-supplement

submodule in V if there exists a submodule T of V such that V = T +U
and U ∩ T is semiartinian. The class of sa-supplement sequences SAS is

a proper class which is generated by socle-free modules injectively. We
studied modules that have an sa-supplement in every extension, mod-

ules whose all submodules are sa-supplement and modules whose all sa-

supplement submodules are direct summand. We provided new charac-
terizations of right semiartinian rings and right SSI rings.

All rings considered in this paper will be associative with an identity element.
Unless otherwise stated, R denotes an arbitrary ring and all modules will be
right unitary R-modules. For a module M , by X ≤ M we mean X is a
submodule of M or M is an extension of X. For a module M , the character
module HomZ(M,Q/Z) is denoted byM+. We use the notation E(M), soc(M),
Rad(M), Z(M) for the injective hull, socle, radical, singular submodule of a
module M respectively. For all other basic or background material, we refer
the reader to [7, 24].

A large number of rings have characterizations in terms of homological al-
gebra. For example, R is semisimple if and only if every short exact sequence
of right (or left) R-modules splits if and only if every short exact sequence of
right (or left) R-modules closed; R is artinian serial with J2(R) = 0 if and only
if every closed exact sequence of right (or left) R-modules splits; R is right
perfect if and only if every short exact sequence of right R-modules supple-
ment; R is von Neumann regular if and only if every short exact sequence of
right (or left) R-modules is pure. The classes of all short exact sequences, pure
short exact sequences, closed short exact sequences, split short exact sequences
and supplement short exact sequences have some common properties. Based
on these properties, axioms of the notion of proper classes were determined.
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Proper classes were introduced by Buchsbaum in [4] for an exact category. We
use the axioms given by Mac Lane in [16] for abelian categories. A proper class
P, in an abelian category A, defines a closed subbifunctor of the Ext1

A functor,
i.e.,

Ext1
P(−,−) ⊆ Ext1

A : Aop ×A→ Ab;

where Ab denotes the category of abelian groups, and for A,C ∈ A, Ext1
A(C,A)

denotes the class of isomorphism classes of short exact sequences 0→ A→ B →
C → 0. Ext1

A(C,A) together with the Baer sum is an abelian group and for
any proper class P, Ext1

P(C,A) is a subgroup (see [16]). These ideas were the
starting point of relative homological algebra. Proper classes are investigated
in [17,18] for abelian groups, and in [11,21] for module categories.

Pure submodules, supplement submodules and closed submodules have of-
fered rich topics of research due to their important roles played in ring and
module theory and relative homological algebra. These submodules respec-
tively induce proper classes. This was noted for abelian groups in [12] and for
modules in [11, 22]. Various generalizations of these proper classes have been
considered. Recent examples of these proper classes of short exact sequences on
module categories include FC-pure and I-pure ([3]), weak supplement ([1]), neat
and coneat ([10]) short exact sequences. Moreover, through torsion theories,
the investigations of proper classes were further developed in [2, 8, 9, 23].

Let P be a proper class. An R-module M is said to be an P-projective (resp.,
P-injective) if it is projective (resp., injective) with respect to all short exact
sequences in P. A module M is called P-coprojective (resp., P-coinjective)
if every short exact sequence of the form 0 → A → B → M → 0 (resp.,
0 → M → B → C → 0) is in P. Let M and J be classes of modules over
some ring R. The smallest proper class k(M) such that all modules in M are
k(M)-coprojective is said to be coprojectively generated by M. The proper
class k(J) which is coinjectively generated by J is defined dually. A module L
is called P-regular, if every exact sequence 0→ A→ L→M → 0 is in P. Note
that if P is the proper class of pure short exact sequences, then P-coprojective,
P-coinjective and P-regular modules are called as flat, fp-injective and regular
modules, respectively (see [21,24]). Moreover, if P is the proper class of supple-
ment short exact sequences, then P-regular modules and P-coinjective modules
are called as supplemented modules and supplementing modules, respectively
(see [7,24]). For more detail on homological objects of proper classes, we refer
to [15,17,21,24].

The notion of a supplement submodule was introduced by Kach and Mares
in [14] in order to characterize semiperfect modules, that is projective modules
whose factor modules have projective covers. A submodule N of M is called
small in M if M 6= N + K for every proper submodule K of M . Let M be a
module and N , K be submodules of M . Then K is said to be a supplement
of N in M or N is said to have a supplement K in M if N + K = M and
N ∩K is small in K. A module M is called supplemented if every submodule
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of M has a supplement in M . See [7, 24] for a nice presentation of results and
the definitions related to supplements and supplemented modules. Recently,
several authors have studied different generalizations of supplemented modules.
In [2], τ -supplemented modules were defined for an arbitrary preradical τ for
the category of right R-modules. For submodules U and V of a module M , V
is said to be a τ -supplement of U in M or U is said to have a τ -supplement V
in M if U + V = M and U ∩ V ≤ τ(V ). M is called a τ -supplemented module
if every submodule of M has a τ -supplement in M . For the particular case
τ = Rad, Rad-supplement submodules have been studied in [5]. A submodule
U of a module M is said to be have a Z∗-supplement V in M if M = U + V
and U ∩ V ≤ Z∗(V ), where Z∗(V ) = {m ∈ V |Rm is small in E(Rm)}. Z∗-
supplement submodule was studied in [23].

The objective of the present paper is to introduce a new type of sup-
plement by replacing “small submodule” with “semiartinian submodule”. A
module M is called semiartinian if every non-zero homomorphic image of M
contains a simple submodule, that is, soc(M/N) 6= 0 for every submodule
N � M . A module M is called socle-free if soc(M) = 0. The torsion theory
t = (TD,FD) generated by the class of semisimple (or even simple) modules
is a hereditary torsion theory, called the Dickson torsion theory. Its torsion
and torsionfree classes are respectively TD = {M | M is semiartinian} and
FD = {M | M is socle-free}. Note that TD is closed under submodules, ho-
momorphic images, direct sums and extensions, while FD is closed under sub-
modules, direct products, extensions and injective hulls. For any module M ,
since any sum of semiartinian submodules of M is semiartinian, M contains
a unique maximal semiartinian submodule, called the torsion submodule with
respect to this torsion theory and denoted by sa(M). Clearly, soc(M) = 0 if
and only if sa(M) = 0.

In Section 1, we present and study a new concept namely sa-supplement
submodule. We will say a submodule X of a module B has a semiartinian
supplement (shortly, sa-supplement) if there exists S ≤ B such that B =
S + X and S ∩ X is semiartinian. A sequence 0 → A →f M → C → 0 is
called SAS if f(A) is an sa-supplement submodule of M . The class SAS of
SAS sequences is a proper class which is coinjectively generated by the class
of semiartinian modules (see [15, Theorem 3.1]). The proper class SAS is
injectively generated by socle-free modules (Proposition 1.1). A ring R is right
semiartinian if and only if every maximal right ideal of R has an sa-supplement
in R (Corollary 1.4). Moreover, in this section, we deal with modules which are
sa-supplement in every containing module, namely sa-supplementing. Injective
modules and semiartinian modules are obvious examples of sa-supplementing
modules. It is shown that (1) an sa-supplementing module M is closed under
sa-supplement quotients if and only if M/sa(M) is injective; (2) a projective
module P is sa-supplementing if and only if P/sa(P ) is a quotient of an injective
module; (3) R is right semiartinian if and only if every right R-module is sa-
supplementing; (4) R is right SSI ring, i.e., every semisimple right module is
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injective if and only if every right module is sa-supplementing. Section 2 deals
with sa-supplemented modules. A module M is said to be sa-supplemented
module if all its submodules have sa-supplements in M . We show that a module
is sa-supplemented if and only if it is semiartinian. In Section 3, we introduce
the notion of ⊕-sa-supplemented modules. An R-module M is called ⊕-sa-
supplemented if its all sa-supplement submodules are direct summands. It
is shown that (1) a module W is a ⊕-sa-supplemented module if and only if
W = sa(W )⊕X, where X is socle-free and sa(W ) is semisimple; (2) R is a right
SSI-ring if and only if every right R-module is ⊕-sa-supplemented if and only if
every injective right R-module is ⊕-sa-supplemented; (3) every projective right
R-module is ⊕-sa-supplemented if and only if there is a ring decomposition
R ∼= A×B, where A is semisimple and B is right socle-free. Finally, we prove
that, over commutative C rings, any module which is projective with respect
to all sa-supplement exact sequences is flat.

1. Sa-supplement submodules

We begin this section by introducing the notion of sa-supplement submod-
ules.

Definition. Let N1 ≤ N . Then N1 is an sa-supplement in N if there exists
S ≤ N such that N = S +N1 and S ∩N1 is a semiartinian module.

Obviously, every semiartinian submodule of a module is sa-supplement. A
sequence 0→M1 →f M →M2 → 0 is called SAS if f(M1) is an sa-supplement
submodule of M . The class SAS of SAS sequences is a proper class which is
coinjectively generated by the class of semiartinian modules (see [15, Theorem
3.1]). In next result, we show that the class SAS is injectively generated by
socle-free modules.

Proposition 1.1. A sequence E : 0→ X → H → Z → 0 is SAS if and only if
Hom(H,F )→ Hom(X,F )→ 0 is exact for each socle-free module F .

Proof. (⇒) Let f : X → W be a homomorphism with W socle-free. It is
enough to show that f∗(E) : 0 → W →g T → Z → 0 is splitting. Since
SAS is a proper class, f∗(E) ∈ SAS, and hence there exists S ≤ T such that
g(W )+S = T and g(W )∩S is semiartinian. But g(W ) is socle-free, and hence
g(W ) ∩ S must be zero. Therefore, f∗(E) is splitting, as desired.

(⇐) By our assumption, X/sa(X) is injective to the sequence E. Then, for
some sa(X) ≤ T ≤ H, (X/sa(X))⊕ (T/sa(X)) = H/sa(X). This shows that
X + T = H and X ∩ T = sa(X). Thus our claim is established. �

A non-zero module M is called local if the sum of all proper submodules of
M is a proper submodule of M . Obviously, simple modules are local. Recall
that for a maximal submodule U of a module M , a submodule V of M is a
supplement of U in M if and only if M = U+V and V is local (see [24, 41.1(3)]).
Analogously we have:
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Proposition 1.2. Let M be a module and U be a maximal submodule of M .
A submodule V of M is an sa-supplement of U in M if and only if M = U +V
and V is semiartinian.

Proof. Let V be an sa-supplement of U in M . Then M = U + V and U ∩ V
is semiartinian. Then since U is a maximal submodule of M , V/(U ∩ V ) is
simple. We have that V is semiartinian since semiartinian modules are closed
under extensions. Conversely, since V is semiartinian and M = U + V , we can
write U ∩ V is semiartinian. Hence, V is an sa-supplement of U in M . �

A module M is called coatomic if every proper submodule of M is contained
in a maximal submodule of M . Semisimple modules and finitely generated
modules are well-known examples of coatomic modules (see, [13, 9.7. Exer-
cises]).

Proposition 1.3. Let M be a coatomic module. Then M is semiartinian if
and only if every maximal submodule of M has an sa-supplement in M .

Proof. The necessity is clear. For sufficiency, assume that the largest semi-
artinian submodule sa(M) of M is proper, that is sa(M) 6= M . Since M is
coatomic, there exists a maximal submodule K of M with sa(M) ≤ K. By
our assumption, K has an sa-supplement, say V , in M . It follows from Propo-
sition 1.2 that V is semiartinian, and this means that V ≤ sa(M) ≤ K. But
M = V +K, and so M = K, a contradiction. �

Corollary 1.4. A ring R is right semiartinian if and only if every maximal
right ideal of R has an sa-supplement in R.

A ring R is called a right C ring if soc(R/I) 6= 0 for every essential right
ideal I of R, or equivalently, if every singular module is semiartinian. Left
perfect rings, right semiartinian rings, two-sided hereditary Noetherian rings
are examples of right C rings. (See [7, 10.10]).

Proposition 1.5. If R is a right C ring, then M is semisimple if and only if
soc(M) = sa(M) and every essential submodule of M has an sa-supplement in
M .

Proof. The necessity is clear. For sufficiency, it is enough to show that M has
no proper essential submodules. Assume on the contrary that M has an es-
sential proper submodule, say A. By our assumption, M = A+ V and A ∩ V
is semiartinian. Then since R is a C ring, V/(A ∩ V ) ∼= M/A is semiartinian.
By the fact that semiartinian modules are closed under extensions, V is semi-
artinian. But then V ≤ soc(M) = sa(M) ≤ A, and hence M = A+ V = A, a
contradiction. Therefore, M has no proper essential submodules, that is, M is
semisimple. �

Recall that a module M is called supplementing if it has a supplement in
any module in which it is contained as a submodule ([7]). In the remaining
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part of this section, we investigated sa-supplementing modules. We call a mod-
ule M sa-supplementing if it has an sa-supplement in every extension. Note
that a module T is sa-supplementing if and only if T has an sa-supplement
in E(N) if and only if T has an sa-supplement in any sa-supplementing mod-
ule. Sa-supplementing modules are closed under extensions and sa-supplement
submodules (see [17, Propositions 1.7-1.8]).

Remark 1.6. (1) Injective modules and semiartinian modules are obvious
examples of sa-supplementing modules.

(2) A socle-free module is sa-supplementing if and only if it is injective by
Proposition 1.1.

Proposition 1.7. The following are equivalent.

(1) All sa-supplementing right R-modules are semiartinian.
(2) All injective right R-modules are semiartinian.
(3) R is a right semiartinian ring.

Proof. (1)⇒ (2) and (3)⇒ (1) are obvious. (2)⇒ (3) Since the class of semi-
artinian modules is closed under submodules, R is semiartinian as a submodule
of E(R). �

Note that R is right hereditary if and only if quotients of injective modules
are injective. Next we consider when quotients of sa-supplementing modules
are sa-supplementing.

Lemma 1.8. Sa-supplementing modules are closed under quotients if and only
if quotients of injective modules are sa-supplementing.

Proof. (⇒) is clear.
(⇐) Let U be an sa-supplementing module and K ≤ U . Consider the

following diagram:

0

��

0

��
K

��

K

��
E : 0 // U

��

// E(U)

f

��

gf // E(U)/U // 0

E1 : 0 // U/K //

��

E(U)/K
g //

��

E(U)/U // 0

0 0

Since U is an sa-supplementing module, it is an sa-supplement in E(U). Then,
by properties of proper classes, U/K is an sa-supplement in E(U)/K. By our



SA-SUPPLEMENT SUBMODULES 153

hypothesis, E(U)/K is sa-supplementing. Thereby, by [17, Proposition 1.8],
U/K is sa-supplementing, as desired. �

Lemma 1.9. The following are equivalent for an sa-supplementing module M .

(1) M/sa(M) is sa-supplementing.
(2) M/sa(M) is injective.
(3) M/N is sa-supplementing for each semiartinian submodule N of M .
(4) M/N is sa-supplementing for each sa-supplement submodule N of M .

Proof. (1) ⇔ (2) By Proposition 1.1, a socle-free sa-supplementing module is
injective. Therefore, M/sa(M) is sa-supplementing if and only if M/sa(M) is
injective.

(2) ⇒ (3) Let N be a semiartinian submodule of M . Consider the ex-
act sequence 0 → sa(M)/N → M/N → M/sa(M) → 0. Since semiartinian
modules are closed under quotients, sa(M)/N is sa-supplementing. By our as-
sumption, since sa-supplementing modules are closed under extensions, M/N
is sa-supplementing.

(3) ⇒ (4) Let N be an sa-supplement submodule of M . Then there is a
submoduleK inM such thatN+K = M andN∩K is semiartinan. SinceN∩K
is semiartinian, N ∩K ⊆ sa(M). Consider the exact sequence 0→ sa(M)/N ∩
K → M/N ∩ K → M/sa(M) → 0. Since semiartinian modules are closed
under quotients, sa(M)/N is sa-supplementing. By our assumption M/sa(M)
is sa-supplementing. Then since sa-supplementing modules are closed under
extensions, M/N is sa-supplementing.

(4) ⇒ (1) In particular, consider the exact sequence 0 → sa(M) → M →
M/sa(M) → 0. Since sa(M) is a trivial sa-supplement submodule of M ,
M/sa(M) is sa-supplementing by our assumption. �

Corollary 1.10. The following are equivalent.

(1) E/sa(E) is injective for each injective module E.
(2) M/sa(M) is injective for each sa-supplementing module M .
(3) The class of sa-supplementing modules is closed under sa-supplement

quotients.

Proof. (2)⇔ (3) follows by Lemma 1.9.
(2)⇒ (1) is obvious.
(1) ⇒ (2) Let M be an sa-supplementing module. There is a submodule

K in E(M) such that M + K = E(M) and M ∩ K is semiartinan. Then
(M/sa(M)) + (K + sa(M)/sa(M)) = E(M)/sa(M). But (M/sa(M)) ∩ (K +
sa(M)/sa(M)) = (M∩K)+sa(M)/sa(M) = 0, and hence M/sa(M) is a direct
summand of E(M)/sa(M). By Lemma 1.9, E(M)/sa(M) is sa-supplementing.
Therefore, M/sa(M) is also sa-supplementing. Now, the claim follows by
Proposition 1.1. �

Proposition 1.11. If R is a right C ring, then the class of sa-supplementing
modules is closed under sa-supplement quotients.
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Proof. If R is a right C ring, then every singular module is semiartinian, i.e.,
every socle-free module is nonsingular. Consider the sequence 0 → sa(E) →
E → E/sa(E)→ 0 for an injective module E. Note that E/sa(E) is socle-free,
and it is nonsingular by our hypothesis. Then, by [20, Lemma 2.3], sa(E) is
closed in E, and hence E ∼= sa(E)⊕E/sa(E). So, E/sa(E) is injective. Now,
the claim follows by Corollary 1.10. �

Lemma 1.12. The following are equivalent for a projective module P .

(1) P is sa-supplementing.
(2) P/sa(P ) is a homomorphic image of an injective module.
(3) For some semiartinian submodule N of P , P/N is a homomorphic

image of an injective module.

Proof. (1)⇒ (2) Consider the following diagram:

0 // P

π

��

ι // E(P )

f

zz
P/sa(P )

Since P is sa-supplementing and P/sa(P ) is socle-free, by Proposition 1.1,
there is a homomorphism f : E(P ) → P/sa(P ) such that fι = π. Since π is
an epimorphism, f is also an epimorphism. Therefore, P/sa(P ) is a quotient
of the injective module E(P ), as claimed.

(2)⇒ (3) is clear.
(3)⇒ (1) Assume that, for some semiartinian submodule N of P , there is an

epimorphism θ : E → P/N where E is an injective module. Let f : P → F be
a homomorphism with F socle-free. Without loss of generality, since socle-free
modules are closed under submodules, we may assume f is an epimorphism.
Consider the following diagram

N

ιN

||
P

f

��

π
}}

ι //

α

!!

E(P )

β

��
0 P/N

}}

oo

δ !!

E
θ

oo

0 F

where ιN : N → P and ι : P → E(P ) are inclusion homomorphisms and π :
P → P/N is the canonical epimorphism. SinceN is semiartinian and F is socle-
free, fιN (N) = 0, and hence there exists a unique homomorphism δ : P/N → F
such that δπ = f . By projectivity of P , there exists a homomorphism α : P →
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E such that θα = π. Then since E is injective, there is a homomorphism
β : E(P )→ E such that βι = α. Then δθβ : E(P )→ F and (δθβ)ι = (δθ)βι =
δ(θα) = δπ = f . By Proposition 1.1, P is sa-supplementing. �

It is well-known that all projective right R-modules are injective (i.e., R is a
right QF-ring) if and only if every right R-module has an epic injective cover.

Corollary 1.13. All projective modules are sa-supplementing if and only if
every socle-free module is a homomorphic image of an injective module.

Proof. Let M be a socle-free module. There is an epimorphism π : P → M
where P is free. Since P is sa-supplementing, M is socle-free and π is an
epimorphism, there is an homomorphism f : E(P ) → M by Proposition 1.1.
The converse follows by Lemma 1.12. �

Corollary 1.14. If R is a right C ring, then a projective module P is sa-
supplementing if and only if P/sa(P ) is injective.

Proof. Assume that a projective module P is sa-supplementing. Then, by
Lemma 1.12, there is an epimorphism θ : E → P/sa(P ) where E is an injective
module. Since R is a right C ring and P/sa(P ) is socle-free, P/sa(P ) is nonsin-
gular. By [20, Lemma 2.3], ker(θ) is closed in E, and hence ker(θ)⊕P/sa(P ) ∼=
E. Therefore, P/sa(P ) is injective. The converse follows by the fact that sa-
supplementing modules are closed under extensions. �

A ring R is right perfect if and only if every right R-module is supplementing
([7, 20.39(14)]). Analogously we have:

Proposition 1.15. The following are equivalent for a ring R.

(1) Every right R-module is sa-supplementing.
(2) R is right semiartinian.

Proof. (2)⇒ (1) is clear.
(1) ⇒ (2) Let M be a socle-free right module and K a submodule of M .

Then K is a socle-free module. By our hypothesis and by Proposition 1.1,
K is injective. Then it is a direct summand of M . This implies that M is
semisimple, but it is socle-free, and hence M = 0. Therefore, every right
module is semiartinian, i.e., R is right semiartinian. �

It is well-known that a right noetherian right semiartinian ring is artinian.
Moreover, a noetherian ring R is right artinian if and only if every free right
R-module is supplementing ([7, 20.39(14)]). Analogously, we have the following
for sa-supplementing modules by Proposition 1.15.

Corollary 1.16. A right noetherian ring R is right artinian if and only if
every free right R-module is sa-supplementing.

A ring R is called a right SSI-ring if every semisimple right R-module is
injective. Then R is a right SSI-ring if and only if R is a right noetherian right
V-ring (see [6]).
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Theorem 1.17. The following are equivalent.

(1) All sa-supplementing right R-modules are injective.
(2) All semiartinian right R-modules are injective.
(3) R is right SSI ring.

Proof. (1)⇒ (2) and (2)⇒ (3) are obvious.
(3) ⇒ (1) Let M be an sa-supplementing right R-module. Then there is a

submodule K in E(M) such that M +K = E(M) and M ∩K is semiartinan.
Recall that soc(M ∩ K) is essential in M ∩ K. Then since R is a right SSI-
ring, soc(M ∩ K) = M ∩ K is injective. So, E(M) = X ⊕ (M ∩ K) for
some X ⊆ E(M). By the modular law, K = (K ∩ X) ⊕ (M ∩ K), and so
M ⊕ (K ∩X) = M +K = E(M). Therefore, M is injective. �

2. Sa-supplemented modules

Recall that a module M is called supplemented if every submodule of M has
a supplement in M . A module M is said to be a sa-supplemented module if
all its submodules have sa-supplements in M . In this section, we show that
sa-supplemented modules are exactly semiartinian modules.

An R-moduleM is injective relative to an R-moduleN (or, M isN -injective)
if, for any submodule K of N , any R-homomorphism f : K → M extends
to some member of HomR(N,M). It is evident that every module is injec-
tive relative to semisimple modules. The following result follows directly from
Proposition 1.1.

Proposition 2.1. An R-module N is sa-supplemented if and only if every
socle-free module M is N -injective.

Semiartinian modules are obvious examples of sa-supplemented modules.

Proposition 2.2. Any submodule or quotient of an sa-supplemented module
is an sa-supplemented module.

Proof. Let M be an sa-supplemented module and H any submodule of M . We
will show that H and M/H are sa-supplemented modules. To show that H
is an sa-supplemented module, let T ≤ H. Since M is an sa-supplemented
module, there is an N ≤M such that N + T = M and N ∩ T is semiartinian.
By the modular law, H = T + (N ∩H). Moreover, T ∩N ∩H is semiartinian
as a submodule of a semiartinian module N ∩ T . This shows that H is an
sa-supplemented module.

Let A/H ≤ M/H. Since M is an sa-supplemented module, there is an
N ≤M such that N+A = M and N ∩A is semiartinian. Then (A/H)+((N+
H)/H) = M/H. Since semiartinian modules are closed under homomorphic
images, (A/H) ∩ ((H + N)/H) = ((A ∩ N) + H)/H ∼= (A ∩ N)/(N ∩ H) is
semiartinian. Thus (N+H)/H is an sa-supplement of A/H in M/H. So M/H
is an sa-supplemented module. �

Proposition 2.3. A socle-free sa-supplemented module is the zero module.
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Proof. Let Q be a socle-free sa-supplemented module and N ≤ Q. By our
hypothesis, there exists S ≤ Q such that N +S = Q and N ∩S is semiartinian.
But Q is socle-free, and hence N ∩ S = 0. Therefore, Q is semisimple, i.e., all
submodule of Q are direct summands. Then Q = soc(Q) = 0, as claimed. �

Corollary 2.4. A module N is an sa-supplemented module if and only if it is
semiartinian.

Proof. Let N be an sa-supplemented module. There exists an exact sequence
0→ sa(N)→ N → N/sa(N)→ 0. Note that N/sa(N) is a socle-free module.
Then, by Proposition 2.3, N = sa(N), as desired. The sufficiency is clear. �

Corollary 2.5. The following statements are equivalent.

(1) All modules are sa-supplemented.
(2) All injective modules are sa-supplemented.
(3) R is a right sa-supplemented module.
(4) All projective modules are sa-supplemented.
(5) R is a right semiartinian.

3. ⊕-sa-supplemented modules

A module M is called ⊕-supplemented if every supplement submodule of M
is a direct summand ([7]). In this section, a module is called ⊕-sa-supplemented
if its sa-supplement submodules are direct summands. Note that a semiartinian
module is ⊕-sa-supplemented if and only if it is semisimple.

Proposition 3.1. Socle-free modules are ⊕-sa-supplemented.

Proof. Let Q be a socle-free module and Z an sa-supplement in Q. Then there
exists S ≤ Q such that S+Z = Q and S∩Z is semiartinian. But Q is socle-free,
and so S ∩ Z = 0. Then, S ⊕ Z = Q, as desired. �

Proposition 3.2. The class of ⊕-sa-supplemented modules is closed under
submodules.

Proof. Let W be a ⊕-sa-supplemented module and Z a submodule of W . Let T
be an sa-supplement submodule of Z. Then there exists H ≤ Z such that T +
H = Z and T ∩H is semiartinian. Moreover, since W is a ⊕-sa-supplemented
module and T ∩ H is an sa-supplement in W , there exists K ≤ W such that
K ⊕ (T ∩H) = W . Then, by the modular law, H = (H ∩K)⊕ (T ∩H). Let
us point out that 0 = (H ∩K) ∩ (T ∩H) = (H ∩K) ∩ T . Now, Z = T +H =
(H ∩K)⊕ T . This proves that Z is a ⊕-sa-supplemented module. �

Proposition 3.3. The class of ⊕-sa-supplemented modules is closed under
sa-supplement quotients.

Proof. Let W be a ⊕-sa-supplemented module and Z an sa-supplement sub-
module of W . Then since W is a ⊕-sa-supplemented module, there exists
K ≤ W such that K ⊕ Z = W . To show that W/Z is a ⊕-sa-supplemented
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module, let Y/Z be an sa-supplement submodule of W/Z. Then there exists
Z ≤ L ≤W such that (L/Z)+(Y/Z) = W/Z and (L∩Y )/Z is semiartinian. By
the modular law, (L∩K)⊕Z = L, and hence Y ∩L = (Y ∩L∩K)⊕Z. Then since
(Y ∩L)/Z is semiartinian and (Y ∩L)/Z ∼= Y ∩L∩K, it follows that Y ∩L∩K
is semiartinian. Then since W = Y + L = Y + ((L ∩K)⊕ Z) = Y + (L ∩K)
and Y ∩ L ∩ K is semiartinian, Y is an sa-supplement in W . But W is ⊕-
sa-supplemented, and so there exists A ≤ W such that A ⊕ Y = W . Then
((A+Z)/Z)⊕ (Y/Z) = W/Z, which implies that W/Z is a ⊕-sa-supplemented
module. �

Corollary 3.4. ⊕-sa-supplemented modules are closed under direct summands.

Lemma 3.5. A module W is a ⊕-sa-supplemented module if and only if W =
soc(W )⊕X for some submodule X of W .

Proof. (⇒) Assume that a module W is a ⊕-sa-supplemented module. Since
sa(W ) is an sa-supplement in every extension and W is a ⊕-sa-supplemented
module, there exists X ≤W such that W = sa(W )⊕X. Recall that sa(W ) is
the largest semiartinian submodule ofW , and soX is socle-free. By Proposition
3.2, sa(W ) is a ⊕-sa-supplemented module, and so it is semisimple. Therefore
sa(W ) = soc(W ), as desired.

(⇐) Note that, by our hypothesis, sa(X) = 0, and hence

sa(W ) = sa(soc(W ))⊕ sa(X) = soc(W ).

Let P be an sa-supplement in W . Then there exists F ≤W such that F +P =
W and F ∩P is semiartinian. Since F ∩P is semiartinian and sa(W ) is defined
as sum of all semiartinian submodules of W , F ∩ P ≤ sa(W ). Then since
sa(W ) is semisimple, there exists U ≤ sa(W ) such that U ⊕ (F ∩P ) = sa(W ).
Therefore W = sa(W )⊕X = U ⊕ (F ∩ P )⊕X. By the modular law, we have
F = F ∩ (U ⊕ X) ⊕ (F ∩ P ). Now W = F + P = P ⊕ (F ∩ (U ⊕ X)), as
desired. �

Note that semiartinian modules, semisimple modules and socle-free modules
are closed under direct sums. Therefore, we have the following by Lemma 3.5.

Corollary 3.6. The class of ⊕-sa-supplemented modules is closed under direct
sums.

Theorem 3.7. The following statements are equivalent.

(1) All modules are ⊕-sa-supplemented.
(2) All injective modules are ⊕-sa-supplemented.
(3) R is a right SSI-ring

Proof. (1)⇒ (2) is clear.
(2) ⇒ (3) Let Z be a semisimple module. Since Z is an sa-supplement in

E(Z) and E(Z) is a ⊕-sa-supplemented module, Z is a direct summand of
E(Z), and hence it is injective.
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(3) ⇒ (1) Let W be any module and U ≤ W . If U is an sa-supplement in
W , then there exists Z ≤W such that Z +U = W and Z ∩U is semiartinian.
By Theorem 1.17, Z ∩ U is injective, and hence there exists Z1 ≤ Z such that
(Z ∩ U)⊕ Z1 = X. Then W = U + Z = U ⊕ Z1, as claimed. �

Theorem 3.8. The following statements are equivalent.

(1) All projective right R-modules are ⊕-sa-supplemented module.
(2) For any projective module P , P = A ⊕ B where A is semisimple and

B is socle-free.
(3) There is a ring decomposition R ∼= A×B, where A is semisimple and

B is right socle-free.

Proof. (1)⇔ (2) follows by Lemma 3.5.
(2) ⇒ (3) By our assumption, R = A ⊕ B where A is semisimple and B is

socle-free. Then A is projective. Assume that Hom(B,A) 6= 0. Then there is
a non-zero homomorphism f : B → A. So f(B) is semisimple and projective
as a direct summand of A. Then B ∼= ker(f)⊕ f(B), but B is socle-free, and
hence f(B) = 0. Then, we have a ring direct sum R ∼= A × B, where A is
semisimple and B is right socle-free. (3)⇒ (2) is clear. �

We close the paper with some results on SAS-projective modules. A module
is called SAS-projective if it is projective with respect to all sa-supplement
exact sequences. A module M is SAS-projective if and only if Ext1

R(M,S) = 0
for each semiartinian R-module S by [15, Theorem 3.1(ix)]. Note that if R is a
right semiartinian ring, then all short exact sequences are in SAS by Proposition
1.15. Thus, SAS-projective right modules are only projective modules over right
semiartinian rings.

Theorem 3.9. Let R be a commutative C ring. Then SAS-projective modules
are flat.

Proof. Let M be an SAS-projective R-module. In particular, since every sim-
ple R-module is semiartinian, Ext1

R(M,S) = 0 for each simple R-module S
by [15, Theorem 3.1(ix)]. Note that if R is commutative and E is an injec-
tive cogenerator, then Hom(S,E) ∼= S for each simple R-module S. Then, for
any simple R-module S, Ext1

R(M,S+) = 0. By the standard adjoint isomor-

phism Ext1
R(M,S+) ∼= (TorR1 (M,S))+ ∼= Ext1

R(S,M+) = 0. We claim to show
that M+ is injective. Consider the exact sequence 0 → M+ → E(M+) →
E(M+)/M+ → 0. Then soc(E(M+)/M+) is projective, otherwise there exists
a submodule K in E(M+) such that M+ is an essential and maximal submod-
ule of K. But this is not possible since Ext1

R(K/M+,M+) = 0. Then since
R is a C ring, E(M+)/M+ is nonsingular. But, this would mean that M+ is
closed in E(M+), and hence it is injective. Then M is flat by [19, Proposition
3.54]. �
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