참고문헌
- Araujo, R., Dunlap, C., Barnett, S.and Franco, C. M. M. 2019. Decoding wheat endosphere-rhizosphere microbiomes in Rhizoctonia solani-infested soils challenged by Streptomyces biocontrol agents. Front. Plant Sci. 10:1038. https://doi.org/10.3389/fpls.2019.01038
- Ascencion, L. C., Liang, W.-J., and Yen, T.-B. 2015. Control of Rhizoctonia solani damping-off disease after soil amendment with dry tissues of Brassica results from increase in Actinomycetes population. Biol. Control 82:21-30. https://doi.org/10.1016/j.biocontrol.2014.11.010
- Basu, A., Chowdhury, S., Ray Chaudhuri, T. and Kundu, S. 2016. Differential behaviour of sheath blight pathogen Rhizoctonia solani in tolerant and susceptible rice varieties before and during infection. Plant Pathol. 65:1333-1346. https://doi.org/10.1111/ppa.12502
- Bonanomi, G., Antignani, V., Pane, C. and Scala, F. 2007. Suppression of soilborne fungal diseases with organic amendments. J. Plant Pathol. 89:311-324.
- Boukaew, S. and Prasertsan, P. 2014. Suppression of rice sheath blight disease using a heat stable culture filtrate from Streptomyces philanthi RM-1-138. Crop Prot. 61:1-10. https://doi.org/10.1016/j.cropro.2014.02.012
- Buzon-Duran, L., Perez-Lebena, E., Martin-Gil, J., Sanchez-Bascones, M. and Martin-Ramos, P. 2020. Applications of Streptomyces spp. enhanced compost in sustainable agriculture. In: Biology of composts, eds. by M. K. Meghvansi and A. Varma, pp. 257-291. Springer, Cham, Switzerland.
- Chang, Y.-C. 1986. Studies on the effect of disease severity of sheath blight on rice yield. J. Agric. Res. China 35:202-209.
- Chen, L.-H., Zhang, J., Shao, X.-H., Wang, S.-S., Miao, Q.-S., Mao, X.-Y., Zhai, Y.-M. and She, D.-L. 2015. Development and evaluation of Trichoderma asperellum preparation for control of sheath blight of rice (Oryza sativa L.). Biocontrol Sci. Technol. 25:316-328. https://doi.org/10.1080/09583157.2014.977225
- Choi, D. B., Tamura, S., Park, Y. S., Okabe, M., Seriu, Y. and Takeda, S. 1996. Efficient tylosin production from Streptomyces fradiae using rapeseed oil. J. Ferment. Bioeng. 82:183-186. https://doi.org/10.1016/0922-338X(96)85047-1
- de Lima Procopio, R. E., da Silva, I. R., Martins, M. K., de Azevedo, J. L. and de Araujo, J. M. 2012. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 16:466-471. https://doi.org/10.1016/j.bjid.2012.08.014
- Efimova, S. S., Schagina, L. V. and Ostroumova, O. S. 2014. Investigation of channel-forming activity of polyene macrolide antibiotics in planar lipid bilayers in the presence of dipole modifiers. Acta Naturae 6:67-79. https://doi.org/10.32607/20758251-2014-6-4-67-79
- Fan, Y.-T. 2017. Efficacy of a biocontrol product of Streptomyces padanus PMS-702 for controlling cucumber downy mildew. M.S. thesis. National Chung Hsing University, Taichung, Taiwan (in Chinese).
- Fan, Y.-T., Chung, K.-R. and Huang, J.-W. 2019. Fungichromin production by Streptomyces padanus PMS-702 for controlling cucumber downy mildew. Plant Pathol. J. 35:341-350. https://doi.org/10.5423/PPJ.OA.03.2019.0057
- Food and Agriculture Organization of the United Nations. 2020. World food and agriculture: statistical yearbook 2020. Food and Agriculture Organization of the United Nations, Rome, Italy. pp. 351.
- Feng, S., Shu, C., Wang, C., Jiang, S. and Zhou, E. 2017. Survival of Rhizoctonia solani AG-1 IA, the causal agent of rice sheath blight, under different environmental conditions. J. Phytopathol. 165:44-52. https://doi.org/10.1111/jph.12535
- Guo, N., Tong, T., Ren, N., Tu, Y. and Li, B. 2018. Saponins from seeds of Genus Camellia: phytochemistry and bioactivity. Phytochemistry 149:42-55. https://doi.org/10.1016/j.phytochem.2018.02.002
- Gwynn, R. 2021. Manual of biocontrol agents online. URL https://www.bcpc.org/my-account [16 December 2020].
- Harikrishnan, H., Shanmugaiah, V., Balasubramanian, N., Sharma, M. P. and Kotchoni, S. O. 2014. Antagonistic potential of native strain Streptomyces aurantiogriseus VSMGT1014 against sheath blight of rice disease. World J. Microbiol. Biotechnol. 30:3149-3161. https://doi.org/10.1007/s11274-014-1742-9
- Hsieh, S. P. Y., Huang, R. Z. and Wang, T. C. 1996. Application of tannic acid qualitative and quantitative growth assay of Rhizotonia spp. Plant Pathol. Bull. 5:100-106 (in Chinese).
- Huang, J. W. and Kuhlman, E. G. 1991. Formulation of a soil amendment to control damping-off of slash pine seedlings. Phytopathology 81:163-170. https://doi.org/10.1094/Phyto-81-163
- International Rice Research Institute. 2013. Standard evaluation system for rice. 5th ed. International Rice Research Institute, Manila, Philippines. 55 pp.
- Jia, Y., Correa-Victoria, F., McClung, A., Zhu, L., Liu, G., Wamishe, Y., Xie, J., Marchetti, M. A., Pinson, S. R. M., Rutger, J. N. and Correll, J. C. 2007. Rapid Determination of rice cultivar responses to the sheath blight pathogen Rhizoctonia solani using a micro-chamber screening method. Plant Dis. 91:485-489. https://doi.org/10.1094/PDIS-91-5-0485
- Kakar, K. U., Nawaz, Z., Cui, Z., Almoneafy, A. A., Ullah, R. and Shu, Q.-Y. 2018. Rhizosphere-associated Alcaligenes and Bacillus strains that induce resistance against blast and sheath blight diseases, enhance plant growth and improve mineral content in rice. J. Appl. Microbiol. 124:779-796. https://doi.org/10.1111/jam.13678
- Kampfer, P. 2006. The family streptomycetaceae, part I: taxonomy. In: The Prokaryotes: a handbook on the biology of bacteria: archaea. bacteria: firmicutes, actinomycetes, Vol.3, 3rd ed., eds. by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt, pp. 538-604. Springer, New York, NY, USA.
- Kijprayoon, S., Tolieng, V., Petsom, A. and Chaicharoenpong, C. 2014. Molluscicidal activity of Camellia oleifera seed meal. ScienceAsia 40:393-399. https://doi.org/10.2306/scienceasia1513-1874.2014.40.393
- Kuo, P.-C., Lin, T.-C., Yang, C.-W., Lin, C.-L., Chen, G.-F. and Huang, J.-W. 2010. Bioactive saponin from tea seed pomace with inhibitory effects against Rhizoctonia solani. J. Agric. Food Chem. 58:8618-8622. https://doi.org/10.1021/jf1017115
- Lee, F. N. and Rush, M. C. 1983. Rice sheath blight: a major rice disease. Plant Dis. 67:829-832. https://doi.org/10.1094/PD-67-829
- Mun, B.-G., Lee, W.-H., Kang, S.-M., Lee, S.-U., Lee, S.-M., Lee, D. Y., Shahid, M., Yun, B.-W. and Lee, I.-J. 2020. Streptomyces sp. LH 4 promotes plant growth and resistance against Sclerotinia sclerotiorum in cucumber via modulation of enzymatic and defense pathways. Plant Soil 448:87-103. https://doi.org/10.1007/s11104-019-04411-4
- Palaniyandi, S. A., Yang, S. H., Zhang, L. and Suh, J.-W. 2013. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 97:9621-9636. https://doi.org/10.1007/s00253-013-5206-1
- Peng, D., Li, S., Wang, J., Chen, C. and Zhou, M. 2014. Integrated biological and chemical control of rice sheath blight by Bacillus subtilis NJ-18 and jinggangmycin. Pest Manag. Sci. 70:258-263. https://doi.org/10.1002/ps.3551
- Phillips, A. J., Sudbery, I. and Ramsdale, M. 2003. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. U. S. A. 100:14327-14332. https://doi.org/10.1073/pnas.2332326100
- Sanchez, S. and Demain, A. L. 2002. Metabolic regulation of fermentation processes. Enzyme Microb. Technol. 31:895-906. https://doi.org/10.1016/S0141-0229(02)00172-2
- Sharma, V., Sharma, A., Malannavar, A. B. and Salwan, R. 2020. Molecular aspects of biocontrol species of Streptomyces in agricultural crops. In: Molecular aspects of plant beneficial microbes in agriculture, eds. by V. Sharma, R. Salwan and L. K. T. Al-Ani, pp. 89-109. Academic Press, London, UK.
- Shih, H.-D. 2003. Control of crop diseases with Streptomyces padanus PMS-702 and identification of fungichromin as its major antifungal metabolite related to suppress plant pathogens. Ph.D. thesis. National Chung Hsing University, Taichung, Taiwan (in Chinese).
- Shrestha, B. K., Karki, H. S., Groth, D. E., Jungkhun, N. and Ham, J. H. 2016. Biological control activities of rice-associated Bacillus sp. strains against sheath blight and bacterial panicle blight of rice. PLoS ONE 11:e0146764. https://doi.org/10.1371/journal.pone.0146764
- Singh, V., Khan, M., Khan, S. and Tripathi, C. K. M. 2009. Optimization of actinomycin V production by Streptomyces triostinicus using artificial neural network and genetic algorithm. Appl. Microbiol. Biotechnol. 82:379-385. https://doi.org/10.1007/s00253-008-1828-0
- Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M. and Tripathi, C. K. M. 2017. Strategies for fermentation medium optimization: an in-depth review. Front. Microbiol. 7:2087. https://doi.org/10.3389/fmicb.2016.02087
- Tsai, W. H. 1975. Studies on the relationship of disease severity of yield and yield loss of rice sheath blight disease. Plant Prot. Bull. Taiwan 17:410-417.
- Waksman, S. A., Schatz, A. and Reynolds, D. M. 2010. Production of antibiotic substances by actinomycetes. Ann. N. Y. Acad. Sci. 1213:112-124. https://doi.org/10.1111/j.1749-6632.2010.05861.x
- Wang, C. J. and Liu, Z. Q. 2007. Foliar uptake of pesticides: present status and future challenge. Pestic. Biochem. Physiol. 87:1-8. https://doi.org/10.1016/j.pestbp.2006.04.004
- Wu, J.-Y., Huang, J.-W., Shih, H.-D., Lin, W.-C. and Liu, Y.-C. 2008. Optimization of cultivation conditions for fungichromin production from Streptomyces padanus PMS-702. J. Chin. Inst. Chem. Eng. 39:67-73. https://doi.org/10.1016/j.jcice.2007.11.006
- Xiong, Z.-Q., Tu, X.-R., Wei, S.-J., Huang, L., Li, X.-H., Lu, H. and Tu, G.-Q. 2013. The mechanism of antifungal action of a new polyene macrolide antibiotic antifungalmycin 702 from Streptomyces padanus JAU4234 on the rice sheath blight pathogen Rhizoctonia solani. PLoS ONE 8:e73884. https://doi.org/10.1371/journal.pone.0073884
- Yang, C.-W. 2006. Effect of tea seed pomace on control of cabbage seedling damping-off caused by Rhizoctonia solani AG-4 and identification for its major ingredient of antifungal activity. M.S. thesis. National Chung Hsing University, Taichung, Taiwan.
- Yuan, W. M. and Crawford, D. L. 1995. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl. Environ. Microbiol. 61:3119-3128. https://doi.org/10.1128/aem.61.8.3119-3128.1995
- Zang, C.-Z., Chang, Y.-N., Chen, H.-B., Wu, J.-Y., Chen, C.-I., Huang, J.-W., Shih, H.-D. and Liu, Y.-C. 2011. Deciphering the roles of fatty acids and oils in fungichromin enhancement from Streptomyces padanus. J. Taiwan Inst. Chem. Eng. 42:413-418. https://doi.org/10.1016/j.jtice.2010.09.010
- Zhang, S.-W., Yang, Y., Wu, Z.-m. and Li, K.-t. 2020. Induced defense responses against Rhizoctonia solani in rice seedling by a novel antifungalmycin N2 from Streptomyces sp. N2. Australas. Plant Pathol. 49:267-276. https://doi.org/10.1007/s13313-020-00703-x
- Zhou, X. G. and Everts, K. L. 2004. Suppression of Fusarium wilt of watermelon by soil amendment with hairy vetch. Plant Dis. 88:1357-1365. https://doi.org/10.1094/PDIS.2004.88.12.1357
- Zhou, W., Liu, X., Zhang, P., Zhou, P. and Shi, X. 2014. Effect analysis of mineral salt concentrations on nosiheptide production by Streptomyces actuosus Z-10 using response surface methodology. Molecules 19:15507-15520. https://doi.org/10.3390/molecules191015507
- Zhu, H., Wang, Z. X., Luo, X. M., Song, J. X. and Huang, B. 2014. Effects of straw incorporation on Rhizoctonia solani inoculum in paddy soil and rice sheath blight severity. J. Agric. Sci. 152:741-748. https://doi.org/10.1017/S002185961300035X