DOI QR코드

DOI QR Code

등온 냉각액을 활용한 plug flow reactor 내의 과열점 제어를 위한 제어모델 개발

Control of Hot Spots in Plug Flow Reactors Using Constant-temperature Coolant

  • 유진욱 (서울대학교 화학생물공학부) ;
  • 김연수 (광운대학교 화학공학과) ;
  • 이종민 (서울대학교 화학생물공학부)
  • Rhyu, Jinwook (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Yeonsoo (Department of Chemical Engineering, Kwangwoon University) ;
  • Lee, Jong Min (Department of Chemical and Biological Engineering, Seoul National University)
  • 투고 : 2020.08.29
  • 심사 : 2020.11.13
  • 발행 : 2021.01.25

초록

Plug flow reactor (PFR) 내의 과열점(hot spot) 온도를 조절하는 것은 생성물의 수득률 및 순도, 안전성 측면에서 중요하다. 본 연구에서는 더 현실에 가깝게 모델링 하기 위하여 PFR 내부의 냉각액 온도를 상태변수로 설정하고 방사 방향의 열 및 물질전달을 고려하였다. 모델은 반응물의 농도 및 온도와 냉각액의 온도 총 3개의 상태변수로 이루어져 있으며, 등온 냉각액의 유량을 조작변수로 가진다. 본 연구에서는 방사 방향의 열 및 물질전달을 고려한 제어식이 그렇지 않은 제어식보다 과열점의 온도를 set point 부근으로 더 효과적으로 유지한다는 것을 보였다. 본 연구에서 제안한 제어식은 냉각액의 온도가 반응물 온도의 약 0.7배 부근일 때 St가 1.3 이상이고 Ac/A가 2.0 이하인 조건에서 강건성을 유지하였다. 이 조건에서 반응기로 유입되는 반응물의 온도가 5% 범위에서 바뀔 때 본 연구에서 제안된 제안식을 이용하면 과열점의 온도를 set point의 1% 이내로 유지할 수 있다.

To control hot spot in a plug flow reactor (PFR) is important for the yield and purity of products and safety. In this paper, coolant temperature is set as a state variable, and radial distributions of heat and mass are considered to model the PFR more realistic than without considering radial distributions. The model consists of three state variables, reactant concentration, reactant temperature, and the coolant temperature. The flow rate of the isothermal coolant is a manipulated variable. This paper shows that the controller considering the radial distributions of heat and mass is more effective than the controller without them. Assuming that u3,0 is 0.7, the suggested control equation was robust when St is bigger than 1.3, and Ac/A is smaller than 2.0. Under this condition, the hot spot temperature changed within the relative error of one percent when the temperature of input altered within the range of five percent.

키워드

참고문헌

  1. Karafyllis, I. and Daoutidis, P., "Control of Hot Spots in Plug Flow Reactors," Computers & Chemical Engineering, 26(7-8), 1087-1094(2002). https://doi.org/10.1016/S0098-1354(02)00027-3
  2. Barrio, V. L., Schaub, G., Rohde, M., Rabe, S., Vogel, F., Cambra, J. F., Arias, P. L. and Guemez, M. B., "Reactor Modeling to Simulate Catalytic Partial Oxidation and Steam Reforming of Methane. Comparison of Temperature Profiles and Strategies for Hot Spot Minimization," International Journal of Hydrogen Energy, 32(10-11), 1421-1428 (2007). https://doi.org/10.1016/j.ijhydene.2006.10.022
  3. Agrawal, R., West, D. H. and Balakotaiah, V., "Modeling and Analysis of Local Hot Spot Formation in Down-flow Adiabatic Packed-bed Reactors," Chemical Engineering Science, 62(18-20), 4926-4943(2007). https://doi.org/10.1016/j.ces.2006.11.057
  4. Weyer, C., Peiffer, S., Schulze, K., Borken, W. and Lischeid, G., "Catchments as Heterogeneous and Multi-species Reactors: An Integral Approach for Identifying Biogeochemical Hot-spots at the Catchment Scale," Journal of Hydrology, 519, 1560-1571 (2014). https://doi.org/10.1016/j.jhydrol.2014.09.005
  5. Yu, G. S., Lee, J. G., Park, D. G., Jeong, M. J., Lee, C. and Sin, J.W., "The Selective Non-Catalytic Reduction Reaction of NOx Using Urea Solution in a Flow Reactor," Korean Chemical Engineering Research, 41(2), 219-223(2003).
  6. Mruyama, S., Jamashita, K., Fujimoto, N., Murata, I., Sudo, Y., Murakami, T. and Fujii, S., "Evaluation of Hot Spot Factors for Thermal and Hydraulic Design of HTTR," Journal of Nuclear Science and Technology, 30(11), 1186-1194(1993). https://doi.org/10.1080/18811248.1993.9734606
  7. Gang, B. G., Gang, G. U., Lee, B. U. and Seo, J. C., "A Study on the Development of AHA (Automatic Hazard Analyzer) for Chemical Processes," Korean Chemical Engineering Research, 37(3), 393-393(1999).
  8. Park, J., Eom, Y. and Lee, K. S., "Design of Temperature Control System for an Extruder using Model Predictive Control," Journal-korean Institute of Chemical Engineers, 37, 539-546(1999).
  9. Palma, M. and Giudici, R., "Analysis of Axial Dispersion in an Oscillatory-flow Continuous Reactor," Chemical Engineering Journal, 94(3), 189-198(2003). https://doi.org/10.1016/S1385-8947(03)00057-3
  10. Gangurde, L. S., Sturm, G. S., Devadiga, T. J., Stankiewicz, A. I. and Stefanidis, G. D., "Complexity and Challenges in Noncontact High Temperature Measurements in Microwave-assisted Catalytic Reactors," Industrial & Engineering Chemistry Research, 56(45), 13379-13391(2017). https://doi.org/10.1021/acs.iecr.7b02091
  11. Seborg, D. E., Mellichamp, D. A., Edgar, T. F. and Doyle III, F. J., Process dynamics and control. 2010: John Wiley & Sons.