참고문헌
- Kim, Y. B., Gwak, Y. R., Keel, S. I., Yun, J. H. and Lee, S. H., "Direct Desulfurization of Limestones under Oxy-Circulating Fluidized Bed Combustion Conditions," Chem. Eng. J., 377, 119650 (2019). https://doi.org/10.1016/j.cej.2018.08.036
- IEA, "World Energy Outlook 2019," OECD(2019).
- Zhai, H., Ou, Y. and Rubin, E. S., "Opportunities for Decarbonizing Existing Us Coal-Fired Power Plants Via CO2 Capture, Utilization and Storage," Environ. Sci. Technol., 49(13), 7571-7579(2015). https://doi.org/10.1021/acs.est.5b01120
- Orr Jr, F. M., "Carbon Capture, Utilization, and Storage: An Update," SPE J., 23(6), 2,444-2,455(2018).
- Omoregbe, O., Mustapha, A. N., Steinberger-Wilckens, R., El-Kharouf, A. and Onyeaka, H., "Carbon Capture Technologies for Climate Change Mitigation: A Bibliometric Analysis of the Scientific Discourse During 1998-2018," Energy Rep., 6, 1200-1212(2020). https://doi.org/10.1016/j.egyr.2020.05.003
- Zheng, L., Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture, 1st ed., Woodhead Publishing, Oxford (2011).
- Shi, Y., Zhong, W., Shao, Y. and Liu, X., "Energy Efficiency Analysis of Pressurized Oxy-Coal Combustion System Utilizing Circulating Fluidized Bed," Appl. Therm. Eng., 150, 1104-1115 (2019). https://doi.org/10.1016/j.applthermaleng.2019.01.085
- Wall, T., Liu, Y., Spero, C., Elliott, L., Khare, S., et al., "An Overview on Oxyfuel Coal Combustion-State of the Art Research and Technology Development," Chem. Eng. Res. Des., 87(8), 1003-1016(2009). https://doi.org/10.1016/j.cherd.2009.02.005
- Yin, C. and Yan, J., "Oxy-Fuel Combustion of Pulverized Fuels: Combustion Fundamentals and Modeling," Appl. Energ., 162, 742-762(2016). https://doi.org/10.1016/j.apenergy.2015.10.149
- Choi, C.-G., Ryu, C., Yang, W. and Chae, T.-Y., "Effects of Recirculation and Dehumidification of the Flue Gas in Oxy-PC Combustion," KOSCO Symposium, December, Gyongju, Korea (2011).
- Duan, Y., Duan, L., Wang, J. and Anthony, E. J., "Observation of Simultaneously Low CO, NOx and SO2 Emission During Oxy-Coal Combustion in a Pressurized Fluidized Bed," Fuel, 242, 374-381(2019). https://doi.org/10.1016/j.fuel.2019.01.048
- Surywanshi, G. D., Pillai, B. B. K., Patnaikuni, V. S., Vooradi, R. and Anne, S. B., "4-E Analyses of Chemical Looping Combustion Based Subcritical, Supercritical and Ultra-Supercritical Coal-Fired Power Plants," Energy Convers. Manage., 200, 112050(2019). https://doi.org/10.1016/j.enconman.2019.112050
- Vu, T. T., Lim, Y.-I., Song, D., Mun, T.-Y., Moon, J.-H., Sun, D., Hwang, Y.-T., Lee, J.-G. and Park, Y. C., "Techno-Economic Analysis of Ultra-Supercritical Power Plants Using Air-and Oxy-Combustion Circulating Fluidized Bed with and without CO2 Capture," Energy, 194, 116855(2020). https://doi.org/10.1016/j.energy.2019.116855
- Barnes, I., "Operating Experience of Low Grade Fuels in Circulating Fluidised Bed Combustion (CFBC) Boilers," IEA Clean Coal Centre(2015).
- De Diego, L., de Las Obras-Loscertales, M., Rufas, A., Garcia-Labiano, F., Gayan, P., Abad, A. and Adanez, J., "Pollutant Emissions in a Bubbling Fluidized Bed Combustor Working in Oxy-Fuel Operating Conditions: Effect of Flue Gas Recirculation," Appl. Energ., 102, 860-867(2013). https://doi.org/10.1016/j.apenergy.2012.08.053
- Hagi, H., Le Moullec, Y., Nemer, M. and Bouallou, C., "Performance Assessment of First Generation Oxy-Coal Power Plants through an Exergy-Based Process Integration Methodology," Energy, 69, 272-284(2014). https://doi.org/10.1016/j.energy.2014.03.008
- Hansen, B. B., Fogh, F., Knudsen, N. O. and Kiil, S., "Performance of a Wet Flue Gas Desulfurization Pilot Plant under OxyFuel Conditions," Ind. Eng. Chem. Res., 50(8), 4238-4244(2011). https://doi.org/10.1021/ie1022173
- Lee, K.-J., Choi, S.-M., Kim, T.-H. and Seo, S.-I., "Performance Evaluation of an Oxy-Coal-Fired Power Generation System-Thermodynamic Evaluation of Power Cycle," J. Korean Soc. Combust., 15(2), 1-11(2010).
- ISO, "Carbon Dioxide Capture - Carbon Dioxide Capture Systems, Technologies and Processes," Switzerland: BSI Standards Publication (2016).
- Lim, Y.-I., Choi, J., Moon, H.-M. and Kim, G.-H., "Techno-Economic Comparison of Absorption and Adsorption Processes for Carbon Monoxide (CO) Separation from Linze-Donawitz Gas (LDG)," Korean Chem. Eng. Res., 54(3), 320-331(2016). https://doi.org/10.9713/kcer.2016.54.3.320
- Oh, C.-H. and Lim, Y.-I., "Process Simulation and Economic Feasibility of Upgraded Biooil Production Plant from Sawdust," Korean Chem. Eng. Res., 56(4), 496-523(2018). https://doi.org/10.9713/KCER.2018.56.4.496
- Sanaye, S., Amani, M. and Amani, P., "4E Modeling and Multi-Criteria Optimization of CCHPW Gas Turbine Plant with Inlet Air Cooling and Steam Injection," Sustain. Energy Technol. Assess., 29, 70-81(2018). https://doi.org/10.1016/j.seta.2018.06.003
- Panopoulos, K., Fryda, L., Karl, J., Poulou, S. and Kakaras, E., "High Temperature Solid Oxide Fuel Cell Integrated with Novel Allothermal Biomass Gasification: Part Ii: Exergy Analysis," J. Power Sources, 159(1), 586-594(2006). https://doi.org/10.1016/j.jpowsour.2005.11.040
- Dai, B., Zhang, L., Cui, J.-f., Hoadley, A. and Zhang, L., "Integration of Pyrolysis and Entrained-Bed Gasification for the Production of Chemicals from Victorian Brown Coal-Process Simulation and Exergy Analysis," Fuel Process. Technol., 155, 21-31(2017). https://doi.org/10.1016/j.fuproc.2016.02.004
- He, C., Feng, Y., Feng, D. and Zhang, X., "Exergy Analysis and Optimization of Sintering Process," Steel Res. Int., 89(12), 1800065 (2018). https://doi.org/10.1002/srin.201800065
- Kotas, T. J., The Exergy Method of Thermal Plant Analysis, 1st ed., Paragon Publishing, London(2013).
- Park, M. H., Kim, J. J., Chen, Y. and Kim, C., "Exergy Analysis of a Coal Fired Power Plant by Aspen Plus," Korean Chem. Eng. Res., 37(5), 752-758(1999).
- Wheeldon, J. and Thimsen, D., in Scala, F. (ed.), Economic Evaluation of Circulating Fluidized Bed Combustion (CFBC) Power Generation Plants, Woodhead Publishing, Oxford, 620-638(2013).
- Do, T. X., Mujahid, R., Lim, H. S., Kim, J.-K., Lim, Y.-I. and Kim, J., "Techno-Economic Analysis of Bio Heavy-Oil Production from Sewage Sludge Using Supercritical and Subcritical Water," Renew. Energy, 151, 30-42(2020). https://doi.org/10.1016/j.renene.2019.10.138
- Do, T. X., Lim, Y.-I., Jang, S. and Chung, H. J., "Hierarchical Economic Potential Approach for Techno-Economic Evaluation of Bioethanol Production from Palm Empty Fruit Bunches," Bioresour. Technol., 189, 224-235(2015). https://doi.org/10.1016/j.biortech.2015.04.020
- Kemp, I. C., Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy, 2nd ed., Butterworth-Heinemann, Amsterdam(2006).