DOI QR코드

DOI QR Code

순환 유동층 보일러와 초초임계 증기 사이클을 이용한 500 MWe급 순산소 화력발전소의 건식 재순환 흐름의 열 교환 및 경제성 분석

Heat Integration and Economic Analysis of Dry Flue Gas Recirculation in a 500 MWe Oxy-coal Circulating Fluidized-bed (CFB) Power Plant with Ultra-supercritical Steam Cycle

  • 김세미 (한경대학교 화학공학과 CoSPE 센터) ;
  • 임영일 (한경대학교 화학공학과 CoSPE 센터)
  • Kim, Semie (CoSPE, Dept. Chemical Engineering, Hankyong National University) ;
  • Lim, Young-Il (CoSPE, Dept. Chemical Engineering, Hankyong National University)
  • 투고 : 2020.07.15
  • 심사 : 2020.09.09
  • 발행 : 2021.01.25

초록

본 연구에서는 CO2 포집을 포함하는 500 MWe 급 전기를 생산하는 순산소 석탄화력발전소에 대한 공정흐름도를 제시하였고, 기술경제성 평가를 수행하였다. 이 석탄화력발전소는 순환 유동층 보일러(CFB), 초초 임계 증기 사이클 증기 터빈, 보일러에서 배출되는 배기가스내 수분과 오염물질을 제거하는 배기가스 정제 장치(FGC), 산소 분리 초저온 공정(ASU), 이산화탄소를 분리하는 극저온 공정(CPU)을 포함한다. 건식 배기가스 재순환(FGR)은 CFB연소기내 온도 제어와 고농도 CO2 배출을 위하여 사용되었다. 이 순산소 석탄화력발전소의 열효율을 증가시키기 위하여 FGR 흐름에 대한 열교환, ASU에서 배출되는 질소 흐름에 대한 열교환, 그리고 CPU 내 기체 압축기의 열 회수를 고려하였다. FGR열교환기의 온도차(ΔT)의 감소는 배기가스의 더 많은 폐열 회수를 의미하며, 전기 및 엑서지 효율을 증가시켰다. FGR열교환기의 ΔT가 10 ℃ 에서 FGR과 FGC 주변의 연간 비용이 최소가 되었다. 이때, 전기 효율은 39%, 총투자비는 1371 M$, 총생산비용은 90 M$, 그리고 투자수익률은 7%/y, 그리고 투자회수기간은 12년으로 예측되었다. 본 연구를 통하여 순산소 석탄화력발전소의 열효율 향상을 위한 열교환망이 제시되었고, FGR 열교환기의 최적 운전 조건이 도출되었다.

This study presented techno-economic analysis of a 500 MWe oxy-coal power plant with CO2 capture. The power plant included a circulating fluidized-bed (CFB), ultra-supercritical steam turbine, flue gas conditioning (FGC), air separation unit (ASU), and CO2 processing unit (CPU). The dry flue gas recirculation (FGR) was used to control the combustion temperature of CFB. One FGR heat exchanger, one heat exchanger for N2 stream exiting ASU, and a heat recovery from CPU compressor were considered to enhance heat efficiency. The decrease in the temperature difference (ΔT) of the FGR heat exchanger that means the increase in heat recovery from flue gas enhanced the electricity and exergy efficiencies. The annual cost including the FGR heat exchanger and FGC cooling water was minimized at ΔT = 10 ℃, where the electricity efficiency, total capital cost, total production cost, and return on investment were 39%, 1371 M$, 90 M$, and 7%/y, respectively.

키워드

참고문헌

  1. Kim, Y. B., Gwak, Y. R., Keel, S. I., Yun, J. H. and Lee, S. H., "Direct Desulfurization of Limestones under Oxy-Circulating Fluidized Bed Combustion Conditions," Chem. Eng. J., 377, 119650 (2019). https://doi.org/10.1016/j.cej.2018.08.036
  2. IEA, "World Energy Outlook 2019," OECD(2019).
  3. Zhai, H., Ou, Y. and Rubin, E. S., "Opportunities for Decarbonizing Existing Us Coal-Fired Power Plants Via CO2 Capture, Utilization and Storage," Environ. Sci. Technol., 49(13), 7571-7579(2015). https://doi.org/10.1021/acs.est.5b01120
  4. Orr Jr, F. M., "Carbon Capture, Utilization, and Storage: An Update," SPE J., 23(6), 2,444-2,455(2018).
  5. Omoregbe, O., Mustapha, A. N., Steinberger-Wilckens, R., El-Kharouf, A. and Onyeaka, H., "Carbon Capture Technologies for Climate Change Mitigation: A Bibliometric Analysis of the Scientific Discourse During 1998-2018," Energy Rep., 6, 1200-1212(2020). https://doi.org/10.1016/j.egyr.2020.05.003
  6. Zheng, L., Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture, 1st ed., Woodhead Publishing, Oxford (2011).
  7. Shi, Y., Zhong, W., Shao, Y. and Liu, X., "Energy Efficiency Analysis of Pressurized Oxy-Coal Combustion System Utilizing Circulating Fluidized Bed," Appl. Therm. Eng., 150, 1104-1115 (2019). https://doi.org/10.1016/j.applthermaleng.2019.01.085
  8. Wall, T., Liu, Y., Spero, C., Elliott, L., Khare, S., et al., "An Overview on Oxyfuel Coal Combustion-State of the Art Research and Technology Development," Chem. Eng. Res. Des., 87(8), 1003-1016(2009). https://doi.org/10.1016/j.cherd.2009.02.005
  9. Yin, C. and Yan, J., "Oxy-Fuel Combustion of Pulverized Fuels: Combustion Fundamentals and Modeling," Appl. Energ., 162, 742-762(2016). https://doi.org/10.1016/j.apenergy.2015.10.149
  10. Choi, C.-G., Ryu, C., Yang, W. and Chae, T.-Y., "Effects of Recirculation and Dehumidification of the Flue Gas in Oxy-PC Combustion," KOSCO Symposium, December, Gyongju, Korea (2011).
  11. Duan, Y., Duan, L., Wang, J. and Anthony, E. J., "Observation of Simultaneously Low CO, NOx and SO2 Emission During Oxy-Coal Combustion in a Pressurized Fluidized Bed," Fuel, 242, 374-381(2019). https://doi.org/10.1016/j.fuel.2019.01.048
  12. Surywanshi, G. D., Pillai, B. B. K., Patnaikuni, V. S., Vooradi, R. and Anne, S. B., "4-E Analyses of Chemical Looping Combustion Based Subcritical, Supercritical and Ultra-Supercritical Coal-Fired Power Plants," Energy Convers. Manage., 200, 112050(2019). https://doi.org/10.1016/j.enconman.2019.112050
  13. Vu, T. T., Lim, Y.-I., Song, D., Mun, T.-Y., Moon, J.-H., Sun, D., Hwang, Y.-T., Lee, J.-G. and Park, Y. C., "Techno-Economic Analysis of Ultra-Supercritical Power Plants Using Air-and Oxy-Combustion Circulating Fluidized Bed with and without CO2 Capture," Energy, 194, 116855(2020). https://doi.org/10.1016/j.energy.2019.116855
  14. Barnes, I., "Operating Experience of Low Grade Fuels in Circulating Fluidised Bed Combustion (CFBC) Boilers," IEA Clean Coal Centre(2015).
  15. De Diego, L., de Las Obras-Loscertales, M., Rufas, A., Garcia-Labiano, F., Gayan, P., Abad, A. and Adanez, J., "Pollutant Emissions in a Bubbling Fluidized Bed Combustor Working in Oxy-Fuel Operating Conditions: Effect of Flue Gas Recirculation," Appl. Energ., 102, 860-867(2013). https://doi.org/10.1016/j.apenergy.2012.08.053
  16. Hagi, H., Le Moullec, Y., Nemer, M. and Bouallou, C., "Performance Assessment of First Generation Oxy-Coal Power Plants through an Exergy-Based Process Integration Methodology," Energy, 69, 272-284(2014). https://doi.org/10.1016/j.energy.2014.03.008
  17. Hansen, B. B., Fogh, F., Knudsen, N. O. and Kiil, S., "Performance of a Wet Flue Gas Desulfurization Pilot Plant under OxyFuel Conditions," Ind. Eng. Chem. Res., 50(8), 4238-4244(2011). https://doi.org/10.1021/ie1022173
  18. Lee, K.-J., Choi, S.-M., Kim, T.-H. and Seo, S.-I., "Performance Evaluation of an Oxy-Coal-Fired Power Generation System-Thermodynamic Evaluation of Power Cycle," J. Korean Soc. Combust., 15(2), 1-11(2010).
  19. ISO, "Carbon Dioxide Capture - Carbon Dioxide Capture Systems, Technologies and Processes," Switzerland: BSI Standards Publication (2016).
  20. Lim, Y.-I., Choi, J., Moon, H.-M. and Kim, G.-H., "Techno-Economic Comparison of Absorption and Adsorption Processes for Carbon Monoxide (CO) Separation from Linze-Donawitz Gas (LDG)," Korean Chem. Eng. Res., 54(3), 320-331(2016). https://doi.org/10.9713/kcer.2016.54.3.320
  21. Oh, C.-H. and Lim, Y.-I., "Process Simulation and Economic Feasibility of Upgraded Biooil Production Plant from Sawdust," Korean Chem. Eng. Res., 56(4), 496-523(2018). https://doi.org/10.9713/KCER.2018.56.4.496
  22. Sanaye, S., Amani, M. and Amani, P., "4E Modeling and Multi-Criteria Optimization of CCHPW Gas Turbine Plant with Inlet Air Cooling and Steam Injection," Sustain. Energy Technol. Assess., 29, 70-81(2018). https://doi.org/10.1016/j.seta.2018.06.003
  23. Panopoulos, K., Fryda, L., Karl, J., Poulou, S. and Kakaras, E., "High Temperature Solid Oxide Fuel Cell Integrated with Novel Allothermal Biomass Gasification: Part Ii: Exergy Analysis," J. Power Sources, 159(1), 586-594(2006). https://doi.org/10.1016/j.jpowsour.2005.11.040
  24. Dai, B., Zhang, L., Cui, J.-f., Hoadley, A. and Zhang, L., "Integration of Pyrolysis and Entrained-Bed Gasification for the Production of Chemicals from Victorian Brown Coal-Process Simulation and Exergy Analysis," Fuel Process. Technol., 155, 21-31(2017). https://doi.org/10.1016/j.fuproc.2016.02.004
  25. He, C., Feng, Y., Feng, D. and Zhang, X., "Exergy Analysis and Optimization of Sintering Process," Steel Res. Int., 89(12), 1800065 (2018). https://doi.org/10.1002/srin.201800065
  26. Kotas, T. J., The Exergy Method of Thermal Plant Analysis, 1st ed., Paragon Publishing, London(2013).
  27. Park, M. H., Kim, J. J., Chen, Y. and Kim, C., "Exergy Analysis of a Coal Fired Power Plant by Aspen Plus," Korean Chem. Eng. Res., 37(5), 752-758(1999).
  28. Wheeldon, J. and Thimsen, D., in Scala, F. (ed.), Economic Evaluation of Circulating Fluidized Bed Combustion (CFBC) Power Generation Plants, Woodhead Publishing, Oxford, 620-638(2013).
  29. Do, T. X., Mujahid, R., Lim, H. S., Kim, J.-K., Lim, Y.-I. and Kim, J., "Techno-Economic Analysis of Bio Heavy-Oil Production from Sewage Sludge Using Supercritical and Subcritical Water," Renew. Energy, 151, 30-42(2020). https://doi.org/10.1016/j.renene.2019.10.138
  30. Do, T. X., Lim, Y.-I., Jang, S. and Chung, H. J., "Hierarchical Economic Potential Approach for Techno-Economic Evaluation of Bioethanol Production from Palm Empty Fruit Bunches," Bioresour. Technol., 189, 224-235(2015). https://doi.org/10.1016/j.biortech.2015.04.020
  31. Kemp, I. C., Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy, 2nd ed., Butterworth-Heinemann, Amsterdam(2006).