DOI QR코드

DOI QR Code

Electrochemical Characteristics of Si/SiO2/C Anode Material for Lithium-Ion Battery According to Addition of CNT and CNF Compounds

CNT와 CNF 복합첨가에 따른 Si/SiO2/C 음극활물질의 전기화학적 특성

  • Seo, Jin-Seong (Department of Chemical Engineering, Chungbuk National University) ;
  • Yoon, Sang-Hyo (Department of Chemical Engineering, Chungbuk National University) ;
  • Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University)
  • 서진성 (충북대학교 화학공학과) ;
  • 윤상효 (충북대학교 화학공학과) ;
  • 나병기 (충북대학교 화학공학과)
  • Received : 2020.10.21
  • Accepted : 2020.11.13
  • Published : 2021.01.25

Abstract

Silicon is a promising next-generation anode material for lithium-ion battery, and it has been studied for commercialization due to the high theoretical capacity. However, it has problems of the volume change during charge-discharge and the poor electrical conductivity. To solve these problems, formation of SiO2 and carbon coating on the surface of silicon crystal were performed to protect the side reaction and enhance the electrical conductivity of silicon. CNT and CNF were also added to mitigate the volume change and increase the conductivity. Physical properties of asprepared samples were analyzed by XRD, SEM, and EDS. Electrochemical characteristics were investigated by electrical conductivity measurement, EIS, CV and cycle performance test. (Si/SiO2/C)+CNT&CNF showed high electrical conductivity and low charge-transfer resistance, and the capacity was 1528 mAh/g at 1st cycle and 1055 mAh/g at 50th cycle with 83% capacity retention.

차세대 리튬이차전지용 음극활물질로 각광을 받고 있는 실리콘은 높은 이론용량을 가지고 있어 상용화를 하기 위해 많은 연구가 진행되었다. 하지만 실리콘은 충방전시 부피팽창이 심하고, 전기전도도가 낮은 단점을 가지고 있다. 이러한 문제를 해결하기 위해서 실리콘 표면에 SiO2를 형성시키고, 탄소를 코팅함으로써 실리콘의 부반응을 억제시키고 전기전도도를 향상시켰다. 추가적으로 CNF와 CNT를 복합적으로 첨가하여 부피팽창에 대한 완충효과를 부여하고 전기전도도를 향상시켰다. 제조된 샘플은 XRD, SEM, EDS로 물리적 특성 분석을 실시하였으며, 전기화학적 특성은 전기전도도, EIS, CV 그리고 사이클 테스트를 통해 분석하였다. (Si/SiO2/C)+CNT&CNF 복합체의 경우 다른 샘플들에 비하여 높은 전기전도도 및 낮은 전하전달저항을 보여주었으며, 사이클테스트 결과 첫 번째 사이클에서 1528 mAh/g 그리고 50번째 사이클에서 1055 mAh/g의 용량을 가졌으며 83%의 용량 유지율을 보여주었다.

Keywords

References

  1. Park, H. Y., Yeom, D. H., Kim, J. G. and Lee, J. K., "MnO/C Nanocomposite Prepared by One-Pot Hydrothermal Reaction for High Performance Lithium-Ion Battery Anodes," Korean J. Chem. Eng., 32(1), 178-183(2015). https://doi.org/10.1007/s11814-014-0265-2
  2. Meng, X., Xu, Y., Cao, H., Lin, X., Ning, P., Zhang, Y., Garcia, Y. G. and Sun, Z., "Internal Failure of Anode Materials for Lithium Batteries - A Critical Review," Green Energy Envrion., 5(1), 22-36(2020). https://doi.org/10.1016/j.gee.2019.10.003
  3. Jo, Y. J. and Lee, J. D., "Effect of Petroleum Pitch Coating on Electrochemical Perforamance of Graphite as Anode Materials," Korean J. Chem. Eng., 36(10), 1724-1731(2019). https://doi.org/10.1007/s11814-019-0354-3
  4. Kim, S. C., Park, Y. K., Kim, B. H., Kim H. G., Lee, W. J., Lee, H. and Jung, S. C., "Facile Precipitation of Tin Oxide Nanoparticles on Graphene Sheet by Liquid Phase Plasma Method for Enhanced Electrochemical Properties," Korean J. Chem. Eng., 35(3), 750-756(2018). https://doi.org/10.1007/s11814-017-0333-5
  5. Li, L., Fang, C., Wei, W., Zhang, L., Ye, Z., He, G. and Huang, Y., "Nano-ordered Structured Regulation in Delithiated Si Anode Triggered by Homogeneous and Stable Li-Ion Diffusion at the Interface," Nano Energy, 72, 104651(2020). https://doi.org/10.1016/j.nanoen.2020.104651
  6. Ren, Y., Liu, Z., Pourpoint, F., Armstrong, R., Grey, C. P. and Bruce, P. G., "Nanoparticulate TiO2(B) : An anode for Lithium-Ion Batteries," Angew. Chem. Int. Ed., 124(9), 2206-2209(2012). https://doi.org/10.1002/ange.201108300
  7. Liu, H., Wang, G., Liu, J., Qiao, S and Ahn, H. J., "Highly Ordered Mesoporous NiO Anode Material for Lithium Ion Batteries with an Excellent Electrochemical Performance," J. Mater. Chem., 21, 3046-3052(2011). https://doi.org/10.1039/c0jm03132a
  8. Bresser, D., Mueller, F., Fiedler, M., Krueger, S., Kloepsch, R., Baither, D., Winter, M., Paillard, E. and Passerini, S., "Transition-Metal-Doped Zinc Oxide Nanoparticles as a New Lithium-Ion Anode Material," Chem. Mater., 25(24), 4977-4985(2013). https://doi.org/10.1021/cm403443t
  9. Kim, H. S. and Cho, J. P., "Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material," Chem. Mater., 20(5), 1679-1681(2008). https://doi.org/10.1021/cm703401u
  10. Chen, Z., Cao, Y., Qian, J., Ai, X. and Yang, H., "Pb-Sandwiched Nanoparticles as Anode Material for Lithium-Ion Batteries," J. Solid State Electrochem., 16, 291-295(2012). https://doi.org/10.1007/s10008-011-1333-8
  11. Cheng, X. B., Zhang, R., Zhao, C. Z. and Zhang, Q., "Toward Safe Lithium Metal Anode in Rechargeable Batteries : A Reivew," Chem. Rev., 117(15), 10403-10473(2017). https://doi.org/10.1021/acs.chemrev.7b00115
  12. Sacci, R. L., Dudney, N. J., More, K. L., Parent, L. R., Arslan, I. Browning, N. D. and Unocic, R. R., "Direct Visualization of Inisial SEI Morphology and Growth Kinetics during Lithium Deposition by In Situ Electrochemical Transmission Electron Microscopy," Chem. Commun., 50, 2104-2107(2014). https://doi.org/10.1039/c3cc49029g
  13. Shi, P., Zhang, X. Q., Shen, X., Zhang, R., Liu, H. and Zhang, Q., "A Review of Composite Lithium Metal Anode for Practical Applications," Adv. Mater. Technol., 5(1), 1900806(2020). https://doi.org/10.1002/admt.201900806
  14. Majeed, M. K., Ma, G., Cao, Y., Mao, H., Ma, X. and Ma, W., "Metal-Organic Frameworks-Drived Mesoporous Si/SiOx@NC Nanoshpere as a Long-Lifespan Anode Material for Lithium-Ion Batteries," Chem. Eur. J., 25(51), 11991-11997(2019). https://doi.org/10.1002/chem.201903043
  15. Tao, H. C., Yang, X. L., Zhang, L. L. and Ni, S. B., "Chemically Activated Graphene/porous Si@SiOx Composite as Anode for Lithium Ion Batteries," Mater. Chem. Phys., 149(3), 528-534(2014).
  16. Si, Q., Hanai, K., Ichikawa, T., Phillipps, M. B., Hirano, A., Imanishi, N., Yamamoto, O. and Takeda, Y., "Improvement of Cyclic Behavior of a Ball-Milled SiO and Carbon Nanofiber Composite Anode for Lithium-Ion Batteries," J. Power Sources, 196, 9774-9779(2011). https://doi.org/10.1016/j.jpowsour.2011.08.005
  17. Tao, H. C., Yang, X. L., Zhang, L. L. and Ni, S. B., "Double-Walled Core-Shell Structured Si@SiO2@C Nanocomposite as Anode for Lithium-ion Batteries," Ionics, 20, 1547-1552(2014). https://doi.org/10.1007/s11581-014-1138-8
  18. Lee, J. H., Kim, S. H. and Kim, W., "A Reserch on the Estimation Method for the SOC of the Lithium Batteries Using AC Impedance," Trans. Korean Inst. Power Electron., 14(6), 457-465(2009).
  19. Ge, M., Rong, J., Fang, X., Zhang, A., Lu, Y. and Zhou, C., "Scalable Preparation of Porous Silicon Nanoparticles and Their Application for Lithium-Ion Battery Anodes," Nano Res., 6(3), 174-181 (2013). https://doi.org/10.1007/s12274-013-0293-y
  20. Zeng, K., Li, T., Qin, X., Liang, G., Zhang, L., Liu, Q., Li, B. and Kang, F., "A Combination of Hierachical Pore and Buffering Layer Construction for Ultra Stable Nanocluster Si/SiOx Anode," Nano Res., 13(11), 2987-2993(2020). https://doi.org/10.1007/s12274-020-2962-y
  21. Yuan, Q. and Zhao, F., "Evaluation and Performance Improvement of Si/SiOx/C Based Composite as Anode Material for Lithium Ion Batteries," Electrochimi. Acta, 115, 16-21(2014). https://doi.org/10.1016/j.electacta.2013.10.106
  22. Wang, K., Tan, Y., Li, P., Xue, B. and Sun, J., "Facile Synthesis of Double-Layer-Constrained Mircon-Sized Porous Si/SiO2/C Composites for Lithium-Ion Battery Anodes," ACS Appl. Mater. Inter., 11(41), 37732-37740(2019). https://doi.org/10.1021/acsami.9b12596
  23. Zhu, M., Yang, J., Chen, H. and Pan, F., "Novel Hybrid Si Nanocrystals Embedded in a Conductive SiOx@C Matrix from One Single Precursor as a High Performance Anode Material for LithiumIon Batteries," J. Mater. Chem. A, 5, 7026-7034(2017). https://doi.org/10.1039/C7TA01254C
  24. Shao, L., Shu, J., Wu, K., Lin, X., Li, P. and Shui, M., "Low Pressure Preparation of Spherical Si@C@CNT@C Anode Material for Lithium-Ion Batteries," J. Electroanal. Chem., 727, 8-12(2014). https://doi.org/10.1016/j.jelechem.2014.05.031
  25. Zhang, M., Hou, X., Wang, J., Li, M. and Hu, S., "Interweaved Si@C/CNTs&CNFs Composites as Anode Materials for Li-Ion Batteries," J. Alloys Comp., 588, 206-211(2014). https://doi.org/10.1016/j.jallcom.2013.10.160
  26. Liu, X. M., Huang, Z., Oh, S. W., Zhang, B. and Mam P. C., "Carbon Nanotube CNT)-Based Composites as Electrode Material for Rechargeable Li-Ion Batteries," Compos. Sci. Technol., 72, 121-44(2012). https://doi.org/10.1016/j.compscitech.2011.11.019