DOI QR코드

DOI QR Code

Phthalate계 환경호르몬 제거를 위한 Lactococcus lactis를 함유한 Chitosan Nanoparticles의 제조

Fabrication of Chitosan Nanoparticles with Lactococcus lactis for the Removal of Phthalate Endocrine Hormone

  • 윤희수 (가천대학교 화공생명공학과) ;
  • 강익중 (가천대학교 화공생명공학과)
  • Yoon, Hee-Soo (Department of Chemical & Bio Engineering, Gachon University) ;
  • Kang, Ik-Joong (Department of Chemical & Bio Engineering, Gachon University)
  • 투고 : 2020.08.14
  • 심사 : 2020.11.06
  • 발행 : 2021.01.25

초록

본 연구에서는 Chitosan nanoparticles (CNPs) 와 Lactococcus lactis (L. lac.) 를 흡착제로 사용하여 phthalates의 흡착 실험을 진행하였다. CNPs는 Tripolyphospate (TPP)와의 가교 결합을 통하여 제조되었으며, 제조과정 중에 L. lac.의 도입을 통하여 L. lac.-CNPs를 제조하였다. 모든 흡착제는 Fourier transform infrared spectroscopy (FTIR)을 사용하여 특성을 측정하여 다양한 작용기의 존재를 확인하였다. Adsorption isotherm 과 adsorption kinetic 을 통하여 CNPs, L. lac. 및 L. lac.-CNPs 의 흡착 거동 및 메커니즘을 확인하였다. 모든 입자에 대하여 DBP 및 DEP 의 흡착 거동은 Langmuir adsorption isotherm model 보다는 Freundlich adsorption isotherm model 에 적합하였으며, 이는 입자의 표면이 이질적 (heterogeneous) 라는 것을 의미한다. 흡착 메커니즘은 Pseudo-1st-order model 보다는 Pseudo-2nd-order model 에 적합하였으며, 이는 DBP 및 DEP 의 흡착이 입자 표면의 다양한 작용기들에 의하여 물리적 흡착보다는 정전기적 인력과 수소 결합 등에 의한 화학적 흡착이 지배적임을 나타낸다. 최종적으로, 쉽고 빠른 방법으로 CNPs 및 L. lac-CNPs 의 제조가 가능하며, 유기성 오염 물질을 효과적으로 제거할 수 있는 저비용의 흡착제로서 사용할 수 있음을 확인하였다.

Chitosan nanoparticles (CNPs) and Lactococcus lactis (L. lac.) were used as adsorbents to evaluate the adsorption performance of endocrine hormones, which are phthalates, in the healthy food packages. CNPs were produced through the cross bond with tripolyphosphate (TPP), and L. lac.-CNPs were prepared through the introduction of L. lac. during the preparation. The various functional groups of all adsorbents were identified using Fourier transform infrared spectroscopy (FTIR). Adsorption isotherm and adsorption kinetic confirmed the adsorption behavior and mechanism of CNPs, L. lac. and L. lac.-CNPs. The adsorption behavior of DBP and DEP for all particles was more suitable for the Freundlich adsorption isotherm model than for the Langmuir adsorption isotherm model, which means that the surface of the particles is heterogeneous. The adsorption mechanism was more suitable for the Pseudo-2nd-order model than for the Pseudo-1st-order model. This means that due to the presence of various functional groups on the particle surface, the adsorption of DBP and DEP is dominated by chemical adsorption such as electrostatic attraction and hydrogen bonding rather than physical adsorption. Finally, it was confirmed that the preparation of CNPs and L. lac.-CNPs can be performed easily and quickly, and it could be used as a cheaper adsorbent that can effectively remove phthalates.

키워드

참고문헌

  1. Fromme, H., et al., "Occurrence and Daily Variation of Phthalate Metabolites in the Urine of an Adult Population," Int J. Hyg. Environ. Health, 210(1), 21-33(2007). https://doi.org/10.1016/j.ijheh.2006.09.005
  2. Silva, M. J., et al., "Quantification of Phthalate Metabolites in Human Urine," J. Chromatogr B Analyt Technol Biomed Life Sci, 860(1), 106-112(2007). https://doi.org/10.1016/j.jchromb.2007.10.023
  3. Becker, K., et al., "DEHP Metabolites in Urine of Children and DEHP in House Dust," Int J. Hyg Environ Health, 207(5), 409- 417(2004). https://doi.org/10.1078/1438-4639-00309
  4. Pecht, M. G., Ali, I. and Carlson, A., "Phthalates in Electronics: The Risks and the Alternatives," IEEE Access, 6, 6232-6242(2018). https://doi.org/10.1109/access.2017.2778950
  5. Ventrice, P., et al., "Phthalates: European Regulation, Chemistry, Pharmacokinetic and Related Toxicity," Environ. Toxicol. Pharmacol., 36(1), 88-96(2013). https://doi.org/10.1016/j.etap.2013.03.014
  6. Wittassek, M., et al., "Internal Phthalate Exposure over the Last Two Decades--a Retrospective Human Biomonitoring Study," Int. J. Hyg. Environ. Health, 210(3), 319-333(2007). https://doi.org/10.1016/j.ijheh.2007.01.037
  7. Latini, G., "Monitoring Phthalate Exposure in Humans," Clin. Chim. Acta, 361(1), 20-29(2005). https://doi.org/10.1016/j.cccn.2005.05.003
  8. Silva, M. J., et al., "Analysis of Human Urine for Fifteen Phthalate Metabolites Using Automated Solid-phase Extraction," J. Chromatogr B Analyt Technol Biomed Life Sci., 805(1), 161-167 (2004). https://doi.org/10.1016/j.jchromb.2004.02.038
  9. Kayser, H., "Ueber die Verdichtung von Gasen an Oberflachen in ihrer Abhangigkeit von Druck und Temperaturure," Annalen der Physik, 250(11), 450-468(1881). https://doi.org/10.1002/andp.18812501105
  10. Hassan, M. and Hawkyard, C., "Decolorisation of Effluent with Ozone and re-use of Spent Dyebath," 149-190(2007).
  11. Huang, R., et al., "Adsorptive Removal of Congo red from Aqueous Solutions Using Crosslinked Chitosan and Crosslinked Chitosan Immobilized Bentonite," Int J Biol Macromol, 86, 496- 504(2016). https://doi.org/10.1016/j.ijbiomac.2016.01.083
  12. Annadurai, G., Chellapandian, M. and Krishnan, M. R. V., "Adsorption of Reactive Dye on Chitin," Environmental Monitoring and Assessment, 59(1), 111-119(1999). https://doi.org/10.1023/A:1006072119624
  13. Longhinotti, E., et al., "Adsorption of Anionic Dyes on the Biopolymer Chitin," Journal of the Brazilian Chemical Society, 9(5), 435-440(1998). https://doi.org/10.1590/S0103-50531998000500005
  14. Vander Wal, A., et al., "Determination of the Total Charge in the Cell Walls of Gram-positive Bacteria," Colloids and Surfaces B: Biointerfaces, 9(1), 81-100(1997). https://doi.org/10.1016/S0927-7765(96)01340-9
  15. Vijayaraghavan, K. and Yun, Y. S., "Bacterial Biosorbents and Biosorption," Biotechnol Adv., 26(3), 266-291(2008). https://doi.org/10.1016/j.biotechadv.2008.02.002
  16. Volesky, B., "Detoxification of Metal-bearing Effluents: Biosorption for the Next Century," Hydrometallurgy, 59(2), 203-216 (2001). https://doi.org/10.1016/S0304-386X(00)00160-2
  17. Veglio, F. and Beolchini, F., "Removal of Metals By Biosorption: A Review," Hydrometallurgy, 44(3), 301-316(1997). https://doi.org/10.1016/S0304-386X(96)00059-X
  18. Sudha Bai, R. and Abraham, T. E., "Studies on Chromium(VI) Adsorption-desorption Using Immobilized Fungal Biomass," Bioresource Technology, 87(1), 17-26(2003). https://doi.org/10.1016/S0960-8524(02)00222-5
  19. Lim, J. W. and Kang, I. J., "Chitosan-gold Nano Composite for Dopamine Analysis using Raman Scattering," Bulletin of the Korean Chemical Society, 34(1), 237-242(2013). https://doi.org/10.5012/bkcs.2013.34.1.237
  20. Ebrahimnejad, P., Khavarpour, M. and Khalili, S., "Survival of Lactobacillus Acidophilus as Probiotic Bacteria using Chitosan Nanoparticles," International Journal of Engineering, 30(4), 57- 63(2017).
  21. Mohammad, N., et al., "Preparation of Chitosan Nanoparticles Containing Naja Naja Oxiana Snake Venom," Nanomedicine, 6(1), 137-143(2010). https://doi.org/10.1016/j.nano.2009.06.002
  22. Everett, D. H., "Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry," Pure and Applied Chemistry, 31(4), 577-638(1972). https://doi.org/10.1351/pac197231040577
  23. Moldes, A. B., et al., "Partial Characterization of Biosurfactant from Lactobacillus Pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil," Biomed Res Int, 13, 961-982(2013).
  24. Sparks, D. L., "Sorption Phenomena on Soils," Environmental Soil Chemistry, 157, 133-186(2003). https://doi.org/10.1016/B978-012656446-4/50005-0
  25. Han, X. and Wang, W., "Adsorption Characteristics of Methylene Blue Onto Low Cost Biomass Material Lotus Leaf," Chemical Engineering Journal, 171(1), 1-8(2011). https://doi.org/10.1016/j.cej.2011.02.067
  26. Ahmad, R. and Kumar, R., "Adsorptive Removal of Congo Red Dye from Aqueous Solution Using Bael Shell Carbon," Applied Surface Science, 257(5), 1628-1633(2010). https://doi.org/10.1016/j.apsusc.2010.08.111
  27. Ahmad, A., et al., "Scavenging Behaviour of Meranti Sawdust in the Removal of Methylene Blue from Aqueous Solution," J. Hazard Mater, 170(1), 357-365(2009). https://doi.org/10.1016/j.jhazmat.2009.04.087
  28. Al-Aoh, H. A., et al., "Adsorption of 4-nitrophenol on Palm Oil Fuel Ash Activated by Amino Silane Coupling Agent," Desalination and Water Treatment, 40(2), 159-167(2012).
  29. Han, R., et al., "Characterization of Modified Wheat Straw, Kinetic and Equilibrium Study About Copper ion and Methylene Blue Adsorption in Batch Mode," Carbohydrate Polymers, 79(4), 1140-1149(2010). https://doi.org/10.1016/j.carbpol.2009.10.054
  30. Kim, B. G. and. Kang, I. J., "Evaluation of the Effects of Biodegradable Nanoparticles on a Vaccine Delivery System Using AFM, SEM, and TEM," Ultramicroscopy, 108(10), 1168-1173(2009). https://doi.org/10.1016/j.ultramic.2008.04.038
  31. Aydin, S., et al., "Modelling of Adsorption Kinetic Processes-Errors," Theory and Application, 18, 19(2008)..
  32. Du, Q., et al., "Highly Enhanced Adsorption of Congo Red Onto Graphene Oxide/chitosan Fibers by Wet-chemical Etching off Silica Nanoparticles," Chemical Engineering Journal, 245, 99-106(2014). https://doi.org/10.1016/j.cej.2014.02.006
  33. Li, Z., et al., "Sorption of Arsenic by Surfactant-modified Zeolite and Kaolinite," Microporous and Mesoporous Materials, 105(3), 291-297(2007). https://doi.org/10.1016/j.micromeso.2007.03.038
  34. Ho, Y. S. and McKay, G., "A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents," Process Safety and Environmental Protection, 76(4), 332-340. 9(1998). https://doi.org/10.1205/095758298529696
  35. Hall, K. R., et al., "Pore- and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions," Industrial & Engineering Chemistry Fundamentals, 5(2), 212-223(1966). https://doi.org/10.1021/i160018a011
  36. Yang, X. and Alduri, B., "Kinetic Modeling of Liquid-phase Adsorption of Reactive Dyes on Activated Carbon," J. Colloid Interface Sci., 287(1), 25-34(2005). https://doi.org/10.1016/j.jcis.2005.01.093
  37. Tan, K. L. and Hameed, B. H., "Insight into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions," Journal of the Taiwan Institute of Chemical Engineers, 74, 25-48(2017). https://doi.org/10.1016/j.jtice.2017.01.024
  38. Tran, H. N., et al., "Mistakes and Inconsistencies Regarding Adsorption of Contaminants from Aqueous Solutions, A Critical Review," Water Res., 120, 88-116(2017). https://doi.org/10.1016/j.watres.2017.04.014