DOI QR코드

DOI QR Code

Effect of Change in Wet/Dry Time of PEMFC Membrane Durability Test Protocol Using Oxygen as Cathode Gas

Cathode 산소 공급조건에서 고분자막 내구평가 프로토콜의 가습/건조 시간 변화의 영향

  • Received : 2020.10.25
  • Accepted : 2020.11.05
  • Published : 2021.01.25

Abstract

Since the durability evaluation for improving the durability of PEMFC polymer membranes is very important for the development of PEMFC, research and development of the polymer membrane durability evaluation protocol (AST) continues. Recently, DOE's polymer membrane chemical/mechanical durability evaluation AST was developed and applied to Nafion XL for review. In order to shorten the evaluation time, oxygen was used as a cathode gas instead of air, and it was finished in 144 hours. Since DOE AST has a large number of voltage changes with 45 seconds of humidification and 30 seconds of drying, the degradation of the electrode has more influence on the MEA durability. Therefore, one cycle time was lengthened with 60sec of wet/300sec of dry, and the drying time was made longer than the humidification time to further deteriorate the polymer membrane, and it was finished in 240 hours. It was confirmed that the DOE AST for evaluation of the durability of the polymer membrane was accompanied by electrode degradation.

PEMFC 고분자막의 내구성 향상을 위한 내구성 평가는 PEMFC 발전을 위해 매우 중요하므로 고분자막 내구성 평가 프로토콜(AST) 연구개발이 계속 되고 있다. 최근에 DOE의 고분자막 화학적/기계적 내구성 평가 AST가 개발되어 Nafion XL에 적용해 검토하였다. 평가시간을 단축시키기 위해 공기대신 산소를 Cathode 가스로 사용해 144시간만에 종료하였다. DOE AST가 가습 45초/건조 30초로 전압변화 횟수가 많아서 전극의 열화가 MEA 내구성에 더 많은 영향을 미쳤다. 그래서 가습 60초/건조 300초로 1사이클 시간을 길게하고 가습시간 대비 건조시간도 길게 하여 고분자막을 더 열화시키게 하였고, 240시간에 종료하였다. 고분자막 내구성 평가를 위한 DOE AST가 전극 열화도 동반됨을 확인하였다.

Keywords

References

  1. Williams, M. C., Strakey, J. P. and Surdoval, W. A., "The U. S. Department of Energy, Office of Fossil Energy Stationary Fuel Cell Program," J. Power Sources, 143(1-2), 191-196(2005). https://doi.org/10.1016/j.jpowsour.2004.12.003
  2. Perry, M. L. and Fuller, T. F., "A Historical Perspective of Fuel Cell Technology in the 20th Century," J. Electrochem. Soc, 149(7), S59-S67(2002). https://doi.org/10.1149/1.1488651
  3. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger. A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  4. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S. "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc., 140(10), 2872-2877(1993). https://doi.org/10.1149/1.2220925
  5. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D. P., "Aging Mechanism and lifetime of PEFC and DMFC," J. Power Sources, 127(1-2), 127-134(2004). https://doi.org/10.1016/j.jpowsour.2003.09.033
  6. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrogen Energy, 31(13), 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  7. Pozio, A., Silva R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48(11), 1543-1548(2003). https://doi.org/10.1016/S0013-4686(03)00026-4
  8. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152(1), A104-A113(2005). https://doi.org/10.1149/1.1830355
  9. Curtin, D. E., Lousenberg, R. D., Henry, T, J., Tangeman, P. C.and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance and Life," J. Power Sources, 131(1-2), 41-48(2004). https://doi.org/10.1016/j.jpowsour.2004.01.023
  10. Collier, A., Wang, H., Yaun, X., Zhang, J. and Wilison, D. P., "Degradation of Polymer Electrolyte Membranes," Int. J. Hydrogen Energy, 31(3), 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  11. https://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/component_durability_profile.pdf, "Doe Cell Component Accelerated Stress Test Protocols For Pem Fuel Cells."
  12. Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., "Cell Evaluation and Analysis Protocol Guidline," NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30 (2014).
  13. Mukundan, R., "Fuel Cell - Performance and Durability FC139 - Modeling, Evaluation, Characterization," 2016 DOE Fuel Cell Technologies Office Annual Merit Review, June 8th, 2016.
  14. Mukundan, R., Baker, A. M., Kusoglu, A., Beattie, P., Knights, S., Weber, A. S. and Borup, R. L., "Membrane Accelerated Stress Test Development for Polymer Electrolyte Fuel Cell Durability Validated Using Field and Drive Cycle Testing," J. Electrochem. Soc., 165(6), F3085-F3093(2018). https://doi.org/10.1149/2.0101806jes
  15. Kim, T. H., Lee, J. H., Cho, G. J. and Park, K. P., "Degradation of Nafion Membrane by Oxygen Radical," Korean Chem. Eng. Res., 44(6), 597-601(2006).
  16. Mench, M. M., Emin, C. K. and Veziroglu, T. N., Polymer Electrolyte Fuel Cell Degradation, Academic Press, Oxford, Waltham, MA, 64-77(2012).
  17. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28(2), 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6