Acknowledgement
This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under research project no. 2020/01/16794.
References
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., Int. J., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
- Akbas, S.D. (2017), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stab. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
- Akbas, S.D. (2018a), "Investigation on free and forced vibration of a bi-material composite beam", J. Politech. Dergisi, 21(1), 65-73.
- Akbas, S.D. (2018b), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., Int. J., 26(6), 733-743. http://dx.doi.org/10.12989/scs.2018.26.6.733.
- Akbas, S.D. (2018c), "Nonlinear thermal displacements of laminated composite beams", Coupled Syst. Mech., Int. J., 7(6), 691-705. https://doi.org/10.12989/csm.2018.7.6.691.
- Akbas, S.D. (2018d), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., Int. J., 66(1), 27-36. http://dx.doi.org/10.12989/sem.2018.66.1.027.
- Akbas, S.D. (2018e), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., Int. J., 67(4), 337-346. http://dx.doi.org/10.12989/sem.2018.67.4.337.
- Akbas, S.D. (2018f), "Large deflection analysis of a fiber reinforced composite beam", Steel Compos. Struct., Int. J., 27(5), 567-576. https://doi.org/10.12989/scs.2018.27.5.567.
- Akbas, S.D. (2019a), "Hygrothermal post-buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(1), 1950009. https://doi.org/10.1142/S1758825119500091.
- Akbas, S.D. (2019b), "Forced vibration analysis of functionally graded sandwich deep beams", Coupled Syst. Mech., Int. J., 8(3), 259-271. https://doi.org/10.12989/csm.2019.8.3.259.
- Akbas, S.D. (2019c), "Post-buckling analysis of a fiber reinforced composite beam with crack", Eng. Fract. Mech., 212, 70-80. https://doi.org/10.1016/j.engfracmech.2019.03.007.
- Akbas, S.D. (2019d), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., Int. J., 72(4), 433-441. https://doi.org/10.12989/sem.2019.72.4.433.
- Akbas, S.D. (2019e), "Nonlinear behavior of fiber reinforced cracked composite beams", Steel Compos. Struct., Int. J., 30(4), 327-336. http://dx.doi.org/10.12989/scs.2019.30.4.327.
- Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm. Stresses, 36(12), 1233-1254. https://doi.org/10.1080/01495739.2013.788397.
- Amabili, M., Pellicano, F. and Paidoussis M.P. (1998), "The small free vibrations and deformation of thin elastic shell", Phil. Trans. R Soc. London, 179, 491-549. https://doi.org/10.1098/rsta.1888.0016.
- Ansari, R. and Rouhi, H. (2015), "Nonlocal flugge shell model for the axial buckling of single-walled carbon nanotubes: An analytical approach", Int. J. Nano Dimens., 6(5), 453-462. https://doi.org/10.7508/IJND.2015.05.002.
- Arnold, R.N. and Warburton, G.B. (1953), "The flexural vibrations of thin cylinders", Proc. Inst. Mech. Eng., 167(1), 62-80. https://doi.org/10.1243/PIMEPROC195316701402.
- Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-Ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., Int. J., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
- Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proc. Cambridge Philos. Soc., 7,101-111.
- Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160, 137. https://doi.org/10.1006/jsvi.1993.1010.
- Chung, H., Turula, P. Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nucl. Eng. Des., 63(1), 109-1012. https://doi.org/10.1016/0029-5493(81)90020-0.
- Civalek, O. (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Num. Methods Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254.
- Shah, A. G., Mahmood, T., and Naeem, M. N. (2009), "Vibrations of FGM thin cylindrical shells with exponential volume fraction law", Applied Mathematics and Mechanics, 30(5), 607-615. http/10.1007/s10483-009-0507-x
- Di Taranto, R.A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin walled circular cylinder", J. Appl. Mech. T. ASME, 31, 700-701. https://doi.org/10.1115/1.3629733.
- Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., Int. J., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
- Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.
- Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., Int. J., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
- Galletly, G.D. (1955), "On the in-vacuo vibrations of simply supported, ring-stiffened cylindrical shells", US National Congress of Applied Mechanics, USA.
- Goncalves, P.B. and Batista, R.C. (1988), "Non-linear vibration analysis of fluid-filled cylindrical shells", J. Sound Vib., 127(1), 133-143. https://doi.org/10.1006/jsvi.2001.4139.
- Jiang, J. and Olson, M.D. (1994), "Vibrational analysis of orthogonally stiffened cylindrical shells using super elements", J. Sound Vib., 173, 73-83. https://doi.org/10.1006/jsvi.1994.1218.
- Kar, V.R. and Panda, S.K. (2017), "Large-amplitude vibration of functionally graded doubly-curved panels under heat conduction", AIAA J., 55(12), 4376-4386. https://doi.org/10.2514/1.J055878.
- Love, A.E.H. (1888), "On the small free vibrations and deformation of thin elastic shell", Phil. Trans. R. Soc. London, 179, 491-549. https://doi.org/10.1098/rsta.1888.0016
- Loy, C.T. and Lam, K.Y. (1997), "Vibration of cylindrical shells with ring supports", J. Mech. Eng., 39, 455-471. https://doi.org/10.1016/S0020-7403(96)00035-5.
- Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324.
- Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
- Mehar, K., Panda, S.K. and Sharma, N. (2020a), "Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure", Eng. Struct., 211, 110444. https://doi.org/10.1016/j.engstruct.2020.110444.
- Mehar, K., Mishra, P.K. and Panda, S.K. (2020b), "Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure", Mech. Adv. Mater. Struct., 2020, 1-13. https://doi.org/10.1080/15376494.2020.1725193.
- Moazzez, K., Googarchin, H.S. and Sharifi, S.M.H. (2018), "Natural frequency analysis of a cylindrical shell containing a variably oriented surface crack utilizing line-spring model." Thin-Wall. Struct., 125, 63-75. https://doi.org/10.1016/j.tws.2018.01.009.
- Naeem, M.N. and Sharma, C.B. (2000), "Prediction of natural frequencies for thin circular cylindrical shells", Proc. Inst. Mech. Eng., 214(10), 1313-1328. https://doi.org/10.1243/0954406001523290
- Naeem, M.N., Ghamkhar, M., Arshad, S.H. and Shah, A.G. (2013), "Vibration analysis of submerged thin FGM cylindrical shells", J. Mech. Sci. Technol., 27(3), 649-656. https://10.1007/s12206-013-0119-6.
- Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mech., 191, 75-91. http/10.1007/s00707-006-0438-0.
- Penzes, R.L.E. and Kraus, H. (1972), "Free vibrations of prestresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10, 1309. https://doi.org/10.2514/3.6605.
- Ramteke, P.M., Mehar, K., Sharma, N. and Panda, S. (2020a), "Numerical prediction of deflection and stress responses of functionally graded structure for grading patterns (power-law, sigmoid and exponential) and variable porosity (even/uneven)", Sci. Iranica., In Press.
- Ramteke, P.M., Mahapatra, B.P., Panda, S.K. and Sharma, N. (2020b), "Static deflection simulation study of 2D Functionally graded porous structure", Mater. Today Proc., 33(8), 5544-5547. https://doi.org/10.1016/j.matpr.2020.03.537.
- Ramteke, P.M., Panda, S.K. and Sharma, N. (2019a), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., Int. J., 33(6), 865-875. https://doi.org/10.12989/scs.2019.33.6.865.
- Rayliegh, J.W.S. (1884), Theory of Sound, Macmillan, London, UK.
- Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeetaba, S.B. (2020), "Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., Int. J., 73(3), 225-238. https://doi.org/10.12989/sem.2020.73.3.225.
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., Int. J., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
- Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells with and without Longitudinal Stiffeners, National Aeronautic and Space Administration, Springfield, USA.
- Shah, A.G., Mahmood, T. and Naeem, M.N. (2009), "Vibrations of FGM thin cylindrical shells with exponential volume fraction law", Appl. Math. Mech., 30(5), 607-615. http/10.1007/s10483-009-0507-x.
- Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., Int. J., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
- Sharma, C.B., Darvizeh, M. and Darvizeh, A. (1998), "Natural frequency response of vertical cantilever composite shells containing fluid", Eng. Struct., 20(8), 732-737. https://doi.org/10.1016/S0141-0296(97)00102-8.
- Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
- Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundation", Engineering, 2, 228-236. https://10.4236/eng.2010.24033.
- Srinivasan, A.V. and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", Trans. ASME J. Eng. Ind., 93, 1229-1232. https://doi.org/10.1115/1.3428067.
- Wang, C. and Lai, J.C.S. (2000), "Prediction of natural frequencies of finite length circular cylindrical shells", Appl. Acoust., 59(4), 385-400. https://doi.org/10.1016/S0003-682X(99)00039-0.
- Wang, C.M., Swaddiwudhipong, S. and Tian, J. (1997), "Ritz method for vibration analysis of cylindrical shells with ring-stiffeners", J. Eng. Mech., 123, 134-143. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:2(134).
- Xiang, Y., Ma, Y.F., Kitipornchai, S. and Lau, C.W.H. (2002), "Exact solutions for vibration of cylindrical shells with intermediate ring supports", Int. J. Mech. Sci., 44(9),1907-1924. https://doi.org/10.1016/S0020-7403(02)00071-1.
- Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Coupled vibration of fluid-filled cylindrical shells using the wave propagation approach", Appl. Acoust., 62, 229-243. https://doi.org/10.1016/S0003-682X(00)00045-1.