DOI QR코드

DOI QR Code

Development of Apparatus for Pure Roll-Motion Test of Underwater Vehicles

수중운동체의 순수 횡동요 시험 기구 개발

  • Kim, Dong-Hwi (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Baek, Hyung-Min (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Lee, Seung-Keon (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Kim, Eun-Soo (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • 김동휘 (부산대학교 조선.해양공학과 대학원) ;
  • 백형민 (부산대학교 조선.해양공학과 대학원) ;
  • 이승건 (부산대학교 조선.해양공학과) ;
  • 김은수 (부산대학교 조선.해양공학과)
  • Received : 2021.01.25
  • Accepted : 2021.02.19
  • Published : 2021.02.28

Abstract

Hydrodynamic coefficients should be accurately estimated to predict the maneuverability of underwater vehicles. Various captive model tests have been performed as part of estimation methods for these coefficients. Estimating hydrodynamic coefficients related to roll motion is important because underwater vehicles are sensitive to changes of roll moment. In this research, a pure roll motion equipment was newly designed to simply estimate hydrodynamic coefficients with respect to roll motion. Roll motion was implemented through a brief mechanical mechanism. The principle of operation, application process, and system identification of the equipment are described. An analysis method of the pure roll test is also suggested. Repeated tests of the newly equipment were carried out to check its reproducibility.

동유체력 미계수는 수중운동체의 조종성능을 예측하기 위해 정확히 추정되어져야 하며 추정 방법의 일환으로 다양한 모형시험이 수행되어오고 있다. 수중운동체는 횡동요 모멘트 변화에 민감하므로 관련 동유체력 미계수를 추정하는 작업은 정확히 수행되어져야 한다. 본 연구에서는 횡동요 운동과 관련한 동유체력 미계수를 간단하게 추정할 수 있는 순수 횡동요 장비를 새롭게 설계하였다. 횡동요 운동은 간단한 기계적 메커니즘을 통하여 구현하였으며, 메커니즘의 원리와 적용과정 그리고 설계한 장비의 system identification에 대해 기술하였다. 또한 순수 횡동요 시험의 해석방법을 제시하고 설계한 장비에 대해 반복시험을 거쳐 결과의 재현성을 확인하였다.

Keywords

Acknowledgement

본 연구는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었습니다.

References

  1. Bae, J. Y. and Shon, K. H.(2008), "A Study on Manoeuvering Motion Characteristics of Manta-type Unmanned Undersea Vehicle", Journal of the Society of Naval Architects of Korea, Vol. 46, No. 2, pp. 114-26. https://doi.org/10.3744/SNAK.2009.46.2.114
  2. Blanke, M. et al.(2000), "Dynamic Model for Thrust Generation of Marine Propellers", Proc.
  3. Feldman, J.(1979), "DTNSRDC Revised Standard Submarine Equations of Motion". DTNSRDC SPD-0303-09.
  4. Fossen, T. I.(1975), "Guidance and Control of Ocean Vehicle", JOHN WILEY & SONS.
  5. Foujino, M.(1975), "The Effect of Frequency Dependence of the Stability Derivatives on Maneuvering Motion". I.S.P. Vol. 22.
  6. Freudenstein, F.(1955), "Approximate synthesis of four-bar linkages". ASME, Vol. 77, pp. 853-861.
  7. Gertler, M. and Hagen, G. R.(1967), "Standard Equations of Motion for Submarine Simulation". NSRDC-Report SR 009 01 01, Task 0102.
  8. Healey, A. J. and Lienard, D.(1993), "Multivariable Sliding-Mode Control for Autonomous Underwater Vehicles". IEEE Journal of Ocean Engineering, 18(3), pp. 327-339. https://doi.org/10.1109/JOE.1993.236372
  9. Jung, J. W., Jeong, J. H., Kim, I. G. and Lee, S. K.(2014a), "Estimation of Hydrodynamic Derivatives of Submarine Model by Using VPMM Test". Journal of Navigation and Port Research, Vol. 39(3), pp. 173-178. https://doi.org/10.5394/KINPR.2015.39.3.173
  10. Jung, J. W., Jeong, J. H., Kim, I. G. and Lee, S. K.(2014b), "Experimental Study on Hydrodynamic Coefficients of Autonomous Underwater Glider Using Vertical Planar Motion Mechanism Test". Journal of Ocean Engineering and Technology, Vol. 28(2), pp. 119-125. https://doi.org/10.5574/KSOE.2014.28.2.119
  11. Jeon, M. J. et al.(2017), "Study on Maneuvering Characteristics of Submerged Body by changing its Design Parameters". Journal of Ocean Engineering and Technology, Vol. 31(2), pp. 155-163. https://doi.org/10.5574/KSOE.2017.31.2.155
  12. Kim, Y. G. et al.(2009), "Prediction of Maneuverability of KCS by CPMC Captive Model Test". Journal of the Society of Naval Architects of Korea, Vol. 46(6), pp. 553-561. https://doi.org/10.3744/SNAK.2009.46.6.553
  13. Lee, T. I. and Kwon, S. H.(2002), "A Study on Practical PMM Test Technique for Ship Maneuverability Using System Identification Method". Journal of Ocean Engineering and Technology, Vol. 16(6), pp. 25-31.
  14. Natesan, Arun K.(1994), "Kinematic analysis and synthesis of Four-bar mechanisms for straight line coupler curves". Dissertation, Rochester Institute of Technology.
  15. Ohtsu, K., Shoji, K. and Okazaki, T.(1996), "MINIMUM - TIME MANEUVERING OF A SHIP, WITH WIND DISTURBANCES, Control Eng. Practice". Vol. 4, No. 3 pp. 385-392. https://doi.org/10.1016/0967-0661(96)00016-0
  16. Purcell. M, et al.(2000), "New capabilities of the REMUS autonomous underwater vehicle". In Proceedings MTS/IEEE Oceans 2000, Providence, Rhode Island.
  17. Park, J. Y. et al.(2015), "Study on Coning Motion Test for Submerged Body". Journal of Ocean Engineering and Technology, Vol. 29(6), pp. 436-444. https://doi.org/10.5574/KSOE.2015.29.6.436
  18. Park, J. Y. et al.(2020), "Study on the Estimatino of Autonomous Underwater Vehicle's Maneuverability Using Vertical Planar Motion Mechanism Test in Self-Propelled Condition". Journal of the Society of Naval Architects of Korea, Vol. 57(5), pp. 287-296. https://doi.org/10.3744/SNAK.2020.57.5.287
  19. SNAME(1950), "Nomenclature for Treating the Motion of a Submerged Body Through a Fluid". The Society of Naval Architects and Marine Engineerings, Technical and Research Bulletin No. 1-5, pp. 1-15.
  20. Watt, G. D.(2007), "Modelling and Simulating Unsteady Six Degrees-of-freedom Submarine Rising Maneuvers". DRDC Atlantic TR 2007-008.