DOI QR코드

DOI QR Code

Development of Curing Process for EMC Encapsulation of Ultra-thin Semiconductor Package

초박형 반도체 패키지의 EMC encapsulation을 위한 경화 공정 개발

  • Received : 2020.12.29
  • Accepted : 2021.02.24
  • Published : 2021.02.28

Abstract

In this paper, the Curing process for Epoxy Molding Compound (EMC) Package was developed by comparing the performance of the EMC/Cu Bi-layer package manufactured by the conventional Hot Press process system and Carbon Nanotubes (CNT) Heater process system of the surface heating system. The viscosity of EMC was measured by using a rheometer for the curing cycle of the CNT Heater. In the EMC/Cu Bi-layer Package manufactured through the two process methods by mentioned above, the voids inside the EMC was analyzed using an optical microscope. In addition, the interfacial void and warpage of the EMC/Cu Bi-layer Package were analyzed through C-Scanning Acoustic Microscope and 3D-Digital Image Correlation. According to these experimental results, it was confirmed that there was neither void in the EMC interior nor difference in the warpage at room temperature, the zero-warpage temperature and the change in warpage.

본 논문은 차량에 사용되는 B필러의 강화재를 기존의 스틸 소재에서 CFRP(Carbon Fiber Reinforced Plastics)와 GFRP(Glass Fiber Reinforced Plastics)로 대체하여 경량화하는 것이 목표다. 이를 위해서는 무게는 감소시키면서 기존 B필러를 대체할 수 있는 구조안정성을 확보해야 한다. 기존 B필러는 스틸 아우터(outer)를 포함하여 다양한 형상의 스틸 강화재로 구성되며, 이와 같은 스틸 강화재 중 2가지의 스틸 강화재를 복합재로 대체하고자 한다. 이와 같은 스틸 강화재는 강화재 각각을 따로 제작하여 용접을 통해 결합되지만, 복합재 강화재는 패치(patch) 형태의 CFRP와 리브(rib) 구조의 GFRP를 활용하여 압축과 사출 공정을 통해 한번에 제작된다. CFRP는 B필러의 고강도부에 부착되어 측면 하중에 저항하도록 하였으며, GFRP 리브는 위상 최적화(Topology optimization) 기법을 통해 비틀림과 측면 하중을 저항하도록 설계하였다. 구조해석을 통해 기존 스틸 강화재와 비교 분석을 수행하였고, 경량화율을 산출하였다.

Keywords

References

  1. Lu, D., and Wong, C.P. (Eds.), "Materials for Advanced Packaging", Vol. 181, New York: Springer, 2009.
  2. Li, Y., and Goyal, D. (Eds.), "3D Microelectronic Packaging: from Fundamentals to Applications", Vol. 57, Springer, 2017.
  3. Centea, T., and Nutt, S.R., "Manufacturing Cost Relationships for Vacuum Bag-only Prepreg Processing", Journal of Composite Materials, Vol. 50, No. 17, 2016, pp. 2305-2321. https://doi.org/10.1177/0021998315602949
  4. Witik, R.A., Gaille, F., Teuscher, R., Ringwald, H., Michaud, V., and Manson, J.-A.E., "Economic and Environmental Assessment of Alternative Production Methods for Composite Aircraft Components", Journal of Cleaner Production, Vol. 29, 2012, pp. 91-102. https://doi.org/10.1016/j.jclepro.2012.02.028
  5. Monaghan, P.F., and Brogan, M.T., "An Overview of Heat Transfer for Processing Thermoplastic Composites in Autoclaves", Proc Flow Processes in Composites Materials Conference. 1991.
  6. Chien, A.T., Cho, S., Joshi, Y., and Kumar, S., "Electrical Conductivity and Joule heating of Polyacrylonitrile/Carbon Nano-tube Composite Fibers", Polymer, Vol. 55, No. 26, 2014, pp. 6896-6905. https://doi.org/10.1016/j.polymer.2014.10.064
  7. Mohiuddin, M., and Hoa, S.V., "Temperature Dependent Electrical Conductivity of CNT-PEEK Composites", Composites Science and Technology, Vol. 72, No. 1, 2011, pp. 21-27. https://doi.org/10.1016/j.compscitech.2011.08.018
  8. Lee, J., Ni, X., Daso, F., Xiao, X., King, D., Gomez, J.S., Varela, T.B., Kessler, S.S., and Wardle, B.L., "Advanced Carbon Fiber Composite Out-of-autoclave Laminate Manufacture via Nano-structured Out-of-oven Conductive Curing", Composites Science and Technology, Vol. 166, 2018, pp. 150-159. https://doi.org/10.1016/j.compscitech.2018.02.031
  9. Tsai, M.Y., Ting, C.W., Huang, C.Y., and Lai, Y.S., "Determination of Residual Strains of the EMC in PBGA during Manufacturing and IR Solder Reflow Processes", Microelectronics Reliability, Vol. 51, No. 3, 2011, pp. 642-648. https://doi.org/10.1016/j.microrel.2010.10.009