DOI QR코드

DOI QR Code

Ca2+ Sensitivity of Anoctamin 6/TMEM16F Is Regulated by the Putative Ca2+-Binding Reservoir at the N-Terminal Domain

  • Roh, Jae Won (Department of Physiology, Dongguk University College of Medicine) ;
  • Hwang, Ga Eun (Department of Physiology, Dongguk University College of Medicine) ;
  • Kim, Woo Kyung (Department of Internal Medicine, Graduate School of Medicine, Dongguk University) ;
  • Nam, Joo Hyun (Department of Physiology, Dongguk University College of Medicine)
  • Received : 2020.10.14
  • Accepted : 2021.01.26
  • Published : 2021.02.28

Abstract

Anoctamin 6/TMEM16F (ANO6) is a dual-function protein with Ca2+-activated ion channel and Ca2+-activated phospholipid scramblase activities, requiring a high intracellular Ca2+ concentration (e.g., half-maximal effective Ca2+ concentration [EC50] of [Ca2+]i > 10 μM), and strong and sustained depolarization above 0 mV. Structural comparison with Anoctamin 1/TMEM16A (ANO1), a canonical Ca2+-activated chloride channel exhibiting higher Ca2+ sensitivity (EC50 of 1 μM) than ANO6, suggested that a homologous Ca2+-transferring site in the N-terminal domain (Nt) might be responsible for the differential Ca2+ sensitivity and kinetics of activation between ANO6 and ANO1. To elucidate the role of the putative Ca2+-transferring reservoir in the Nt (Nt-CaRes), we constructed an ANO6-1-6 chimera in which Nt-CaRes was replaced with the corresponding domain of ANO1. ANO6-1-6 showed higher sensitivity to Ca2+ than ANO6. However, neither the speed of activation nor the voltage-dependence differed between ANO6 and ANO6-1-6. Molecular dynamics simulation revealed a reduced Ca2+ interaction with Nt-CaRes in ANO6 than ANO6-1-6. Moreover, mutations on potentially Ca2+-interacting acidic amino acids in ANO6 Nt-CaRes resulted in reduced Ca2+ sensitivity, implying direct interactions of Ca2+ with these residues. Based on these results, we cautiously suggest that the net charge of Nt-CaRes is responsible for the difference in Ca2+ sensitivity between ANO1 and ANO6.

Keywords

Acknowledgement

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education of South Korea (No. NRF-2019R1I1A3A01041391).

References

  1. Alvadia, C., Lim, N.K., Clerico Mosina, V., Oostergetel, G.T., Dutzler, R., and Paulino, C. (2019). Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F. Elife 8, e44365. https://doi.org/10.7554/elife.44365
  2. Benkert, P., Kunzli, M., and Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Res. 37(Web Server issue), W510-W514. https://doi.org/10.1093/nar/gkp322
  3. Bethel, N.P. and Grabe, M. (2016). Atomistic insight into lipid translocation by a TMEM16 scramblase. Proc. Natl. Acad. Sci. U. S. A. 113, 14049-14054. https://doi.org/10.1073/pnas.1607574113
  4. Brunner, J.D., Lim, N.K., Schenck, S., Duerst, A., and Dutzler, R. (2014). X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516, 207-212. https://doi.org/10.1038/nature13984
  5. Caputo, A., Caci, E., Ferrera, L., Pedemonte, N., Barsanti, C., Sondo, E., Pfeffer, U., Ravazzolo, R., Zegarra-Moran, O., and Galietta, L.J. (2008). TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322, 590-594. https://doi.org/10.1126/science.1163518
  6. Dang, S., Feng, S., Tien, J., Peters, C.J., Bulkley, D., Lolicato, M., Zhao, J., Zuberbuhler, K., Ye, W., Qi, L., et al. (2017). Cryo-EM structures of the TMEM16A calcium-activated chloride channel. Nature 552, 426-429. https://doi.org/10.1038/nature25024
  7. Darden, T., York, D., and Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089-10092. https://doi.org/10.1063/1.464397
  8. Dhakal, S. and Lee, Y. (2019). Transient receptor potential channels and metabolism. Mol. Cells 42, 569-578. https://doi.org/10.14348/MOLCELLS.2019.0007
  9. Ehlen, H.W., Chinenkova, M., Moser, M., Munter, H.M., Krause, Y., Gross, S., Brachvogel, B., Wuelling, M., Kornak, U., and Vortkamp, A. (2013). Inactivation of anoctamin-6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues. J. Bone Miner. Res. 28, 246-259. https://doi.org/10.1002/jbmr.1751
  10. Falzone, M.E., Malvezzi, M., Lee, B.C., and Accardi, A. (2018). Known structures and unknown mechanisms of TMEM16 scramblases and channels. J. Gen. Physiol. 150, 933-947. https://doi.org/10.1085/jgp.201711957
  11. Feng, S., Dang, S., Han, T.W., Ye, W., Jin, P., Cheng, T., Li, J., Jan, Y.N., Jan, L.Y., and Cheng, Y. (2019). Cryo-EM studies of TMEM16F calcium-activated ion channel suggest features important for lipid scrambling. Cell Rep. 28, 567-579.e4. https://doi.org/10.1016/j.celrep.2019.06.023
  12. Grabarek, Z. (2006). Structural basis for diversity of the EF-hand calciumbinding proteins. J. Mol. Biol. 359, 509-525. https://doi.org/10.1016/j.jmb.2006.03.066
  13. Grubb, S., Poulsen, K.A., Juul, C.A., Kyed, T., Klausen, T.K., Larsen, E.H., and Hoffmann, E.K. (2013). TMEM16F (Anoctamin 6), an anion channel of delayed Ca2+ activation. J. Gen. Physiol. 141, 585-600. https://doi.org/10.1085/jgp.201210861
  14. Harper, M.T. and Poole, A.W. (2013). Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity. Cell Death Dis. 4, e969. https://doi.org/10.1038/cddis.2013.495
  15. Hoover, W.G. (1985). Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A Gen. Phys. 31, 1695-1697. https://doi.org/10.1103/PhysRevA.31.1695
  16. Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B.L., Grubmuller, H., and MacKerell, A.D., Jr. (2017). CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71-73. https://doi.org/10.1038/nmeth.4067
  17. Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics. J. Mol. Graph. 14, 33-38, 27-28.
  18. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L. (1983). Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926-935. https://doi.org/10.1063/1.445869
  19. Jung, J., Nam, J.H., Park, H.W., Oh, U., Yoon, J.H., and Lee, M.G. (2013). Dynamic modulation of ANO1/TMEM16A HCO3- permeability by Ca2+/calmodulin. Proc. Natl. Acad. Sci. U. S. A. 110, 360-365. https://doi.org/10.1073/pnas.1211594110
  20. Kim, H.J., Jun, I., Yoon, J.S., Jung, J., Kim, Y.K., Kim, W.K., Kim, B.J., Song, J., Kim, S.J., Nam, J.H., et al. (2015). Selective serotonin reuptake inhibitors facilitate ANO6 (TMEM16F) current activation and phosphatidylserine exposure. Pflugers Arch. 467, 2243-2256. https://doi.org/10.1007/s00424-015-1692-6
  21. Ko, W., Jung, S.R., Kim, K.W., Yeon, J.H., Park, C.G., Nam, J.H., Hille, B., and Suh, B.C. (2020). Allosteric modulation of alternatively spliced Ca2+-activated Cl- channels TMEM16A by PI(4,5)P2 and CaMKII. Proc. Natl. Acad. Sci. U. S. A. 117, 30787-30798. https://doi.org/10.1073/pnas.2014520117
  22. Kunzelmann, K., Nilius, B., Owsianik, G., Schreiber, R., Ousingsawat, J., Sirianant, L., Wanitchakool, P., Bevers, E.M., and Heemskerk, J.W. (2014). Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramblase? Pflugers Arch. 466, 407-414. https://doi.org/10.1007/s00424-013-1305-1
  23. Le, S.C., Jia, Z., Chen, J., and Yang, H. (2019). Molecular basis of PIP2-dependent regulation of the Ca2+-activated chloride channel TMEM16A. Nat. Commun. 10, 3769. https://doi.org/10.1038/s41467-019-11784-8
  24. Lee, J., Cheng, X., Swails, J.M., Yeom, M.S., Eastman, P.K., Lemkul, J.A., Wei, S., Buckner, J., Jeong, J.C., Qi, Y., et al. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405-413. https://doi.org/10.1021/acs.jctc.5b00935
  25. Lee, S.K. and Ahnn, J. (2020). Regulator of calcineurin (RCAN): beyond Down syndrome critical region. Mol. Cells 43, 671-685. https://doi.org/10.14348/molcells.2020.0060
  26. Liang, P. and Yang, H. (2021). Molecular underpinning of intracellular pH regulation on TMEM16F. J. Gen. Physiol. 153, e202012704. https://doi.org/10.1085/jgp.202012704
  27. Lin, H., Jun, I., Woo, J.H., Lee, M.G., Kim, S.J., and Nam, J.H. (2019). Temperature-dependent increase in the calcium sensitivity and acceleration of activation of ANO6 chloride channel variants. Sci. Rep. 9, 6706. https://doi.org/10.1038/s41598-019-43162-1
  28. Lin, H., Roh, J., Woo, J.H., Kim, S.J., and Nam, J.H. (2018). TMEM16F/ANO6, a Ca2+-activated anion channel, is negatively regulated by the actin cytoskeleton and intracellular MgATP. Biochem. Biophys. Res. Commun. 503, 2348-2354. https://doi.org/10.1016/j.bbrc.2018.06.160
  29. Nose, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511-519. https://doi.org/10.1063/1.447334
  30. Park, W.J., Song, J.H., Kim, G.T., and Park, T.S. (2020). Ceramide and sphingosine 1-phosphate in liver diseases. Mol. Cells 43, 419-430. https://doi.org/10.14348/molcells.2020.0054
  31. Paulino, C., Kalienkova, V., Lam, A.K.M., Neldner, Y., and Dutzler, R. (2017). Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM. Nature 552, 421-425. https://doi.org/10.1038/nature24652
  32. Pedemonte, N. and Galietta, L.J. (2014). Structure and function of TMEM16 proteins (anoctamins). Physiol. Rev. 94, 419-459. https://doi.org/10.1152/physrev.00039.2011
  33. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. https://doi.org/10.1002/jcc.20084
  34. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., and Schulten, K. (2005). Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781-1802. https://doi.org/10.1002/jcc.20289
  35. Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J.C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 321-341.
  36. Schroeder, B.C., Cheng, T., Jan, Y.N., and Jan, L.Y. (2008). Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134, 1019-1029. https://doi.org/10.1016/j.cell.2008.09.003
  37. Schwede, T., Kopp, J., Guex, N., and Peitsch, M.C. (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381-3385. https://doi.org/10.1093/nar/gkg520
  38. Scudieri, P., Caci, E., Venturini, A., Sondo, E., Pianigiani, G., Marchetti, C., Ravazzolo, R., Pagani, F., and Galietta, L.J. (2015). Ion channel and lipid scramblase activity associated with expression of TMEM16F/ANO6 isoforms. J. Physiol. 593, 3829-3848. https://doi.org/10.1113/JP270691
  39. Soulard, C., Salsac, C., Mouzat, K., Hilaire, C., Roussel, J., Mezghrani, A., Lumbroso, S., Raoul, C., and Scamps, F. (2020). Spinal motoneuron TMEM16F acts at C-boutons to modulate motor resistance and contributes to ALS pathogenesis. Cell Rep. 30, 2581-2593.e7. https://doi.org/10.1016/j.celrep.2020.02.001
  40. Suzuki, J., Umeda, M., Sims, P.J., and Nagata, S. (2010). Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468, 834-838. https://doi.org/10.1038/nature09583
  41. Tak, M.H., Jang, Y., Son, W.S., Yang, Y.D., and Oh, U. (2019). EF-hand like region in the N-terminus of anoctamin 1 modulates channel activity by Ca2+ and voltage. Exp. Neurobiol. 28, 658-669. https://doi.org/10.5607/en.2019.28.6.658
  42. Terashima, H., Picollo, A., and Accardi, A. (2013). Purified TMEM16A is sufficient to form Ca2+-activated Cl- channels. Proc. Natl. Acad. Sci. U. S. A. 110, 19354-19359. https://doi.org/10.1073/pnas.1312014110
  43. Tian, Y., Kongsuphol, P., Hug, M., Ousingsawat, J., Witzgall, R., Schreiber, R., and Kunzelmann, K. (2011). Calmodulin-dependent activation of the epithelial calcium-dependent chloride channel TMEM16A. FASEB J. 25, 1058-1068. https://doi.org/10.1096/fj.10-166884
  44. Tien, J., Peters, C.J., Wong, X.M., Cheng, T., Jan, Y.N., Jan, L.Y., and Yang, H. (2014). A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity. Elife 3, e02772. https://doi.org/10.7554/elife.02772
  45. Vocke, K., Dauner, K., Hahn, A., Ulbrich, A., Broecker, J., Keller, S., Frings, S., and Mohrlen, F. (2013). Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels. J. Gen. Physiol. 142, 381-404. https://doi.org/10.1085/jgp.201311015
  46. Whitlock, J.M. and Hartzell, H.C. (2017). Anoctamins/TMEM16 proteins: chloride channels flirting with lipids and extracellular vesicles. Annu. Rev. Physiol. 79, 119-143. https://doi.org/10.1146/annurev-physiol-022516-034031
  47. Wu, N., Cernysiov, V., Davidson, D., Song, H., Tang, J., Luo, S., Lu, Y., Qian, J., Gyurova, I.E., Waggoner, S.N., et al. (2020). Critical role of lipid scramblase TMEM16F in phosphatidylserine exposure and repair of plasma membrane after pore formation. Cell Rep. 30, 1129-1140.e5. https://doi.org/10.1016/j.celrep.2019.12.066
  48. Xiao, Q., Yu, K., Perez-Cornejo, P., Cui, Y., Arreola, J., and Hartzell, H.C. (2011). Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc. Natl. Acad. Sci. U. S. A. 108, 8891-8896. https://doi.org/10.1073/pnas.1102147108
  49. Yang, H., Kim, A., David, T., Palmer, D., Jin, T., Tien, J., Huang, F., Cheng, T., Coughlin, S.R., Jan, Y.N., et al. (2012). TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 151, 111-122. https://doi.org/10.1016/j.cell.2012.07.036
  50. Yang, T. and Colecraft, H.M. (2016). Calmodulin regulation of TMEM16A and 16B Ca2+-activated chloride channels. Channels (Austin) 10, 38-44. https://doi.org/10.1080/19336950.2015.1058455
  51. Yang, T., Hendrickson, W.A., and Colecraft, H.M. (2014). Preassociated apocalmodulin mediates Ca2+-dependent sensitization of activation and inactivation of TMEM16A/16B Ca2+-gated Cl- channels. Proc. Natl. Acad. Sci. U. S. A. 111, 18213-18218. https://doi.org/10.1073/pnas.1420984111
  52. Yang, Y.D., Cho, H., Koo, J.Y., Tak, M.H., Cho, Y., Shim, W.S., Park, S.P., Lee, J., Lee, B., Kim, B.M., et al. (2008). TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455, 1210-1215. https://doi.org/10.1038/nature07313
  53. Ye, W., Han, T.W., Nassar, L.M., Zubia, M., Jan, Y.N., and Jan, L.Y. (2018). Phosphatidylinositol-(4, 5)-bisphosphate regulates calcium gating of small-conductance cation channel TMEM16F. Proc. Natl. Acad. Sci. U. S. A. 115, E1667-E1674. https://doi.org/10.1073/pnas.1718728115
  54. Yu, K., Jiang, T., Cui, Y., Tajkhorshid, E., and Hartzell, H.C. (2019). A network of phosphatidylinositol 4,5-bisphosphate binding sites regulates gating of the Ca2+-activated Cl- channel ANO1 (TMEM16A). Proc. Natl. Acad. Sci. U. S. A. 116, 19952-19962. https://doi.org/10.1073/pnas.1904012116
  55. Yu, Y. and Chen, T.Y. (2015). Purified human brain calmodulin does not alter the bicarbonate permeability of the ANO1/TMEM16A channel. J. Gen. Physiol. 145, 79-81. https://doi.org/10.1085/jgp.201411294
  56. Zaitseva, E., Zaitsev, E., Melikov, K., Arakelyan, A., Marin, M., Villasmil, R., Margolis, L.B., Melikyan, G.B., and Chernomordik, L.V. (2017). Fusion stage of HIV-1 entry depends on virus-induced cell surface exposure of phosphatidylserine. Cell Host Microbe 22, 99-110.e7. https://doi.org/10.1016/j.chom.2017.06.012
  57. Zhang, Y., Le, T., Grabau, R., Mohseni, Z., Kim, H., Natale, D.R., Feng, L., Pan, H., and Yang, H. (2020). TMEM16F phospholipid scramblase mediates trophoblast fusion and placental development. Sci. Adv. 6, eaba0310. https://doi.org/10.1126/sciadv.aba0310

Cited by

  1. Gating and Regulatory Mechanisms of TMEM16 Ion Channels and Scramblases vol.12, 2021, https://doi.org/10.3389/fphys.2021.787773
  2. Intramolecular Disulfide Bonds for Biogenesis of Calcium Homeostasis Modulator 1 Ion Channel Are Dispensable for Voltage-Dependent Activation vol.44, pp.10, 2021, https://doi.org/10.14348/molcells.2021.0131