Browse > Article
http://dx.doi.org/10.14348/molcells.2021.2203

Ca2+ Sensitivity of Anoctamin 6/TMEM16F Is Regulated by the Putative Ca2+-Binding Reservoir at the N-Terminal Domain  

Roh, Jae Won (Department of Physiology, Dongguk University College of Medicine)
Hwang, Ga Eun (Department of Physiology, Dongguk University College of Medicine)
Kim, Woo Kyung (Department of Internal Medicine, Graduate School of Medicine, Dongguk University)
Nam, Joo Hyun (Department of Physiology, Dongguk University College of Medicine)
Abstract
Anoctamin 6/TMEM16F (ANO6) is a dual-function protein with Ca2+-activated ion channel and Ca2+-activated phospholipid scramblase activities, requiring a high intracellular Ca2+ concentration (e.g., half-maximal effective Ca2+ concentration [EC50] of [Ca2+]i > 10 μM), and strong and sustained depolarization above 0 mV. Structural comparison with Anoctamin 1/TMEM16A (ANO1), a canonical Ca2+-activated chloride channel exhibiting higher Ca2+ sensitivity (EC50 of 1 μM) than ANO6, suggested that a homologous Ca2+-transferring site in the N-terminal domain (Nt) might be responsible for the differential Ca2+ sensitivity and kinetics of activation between ANO6 and ANO1. To elucidate the role of the putative Ca2+-transferring reservoir in the Nt (Nt-CaRes), we constructed an ANO6-1-6 chimera in which Nt-CaRes was replaced with the corresponding domain of ANO1. ANO6-1-6 showed higher sensitivity to Ca2+ than ANO6. However, neither the speed of activation nor the voltage-dependence differed between ANO6 and ANO6-1-6. Molecular dynamics simulation revealed a reduced Ca2+ interaction with Nt-CaRes in ANO6 than ANO6-1-6. Moreover, mutations on potentially Ca2+-interacting acidic amino acids in ANO6 Nt-CaRes resulted in reduced Ca2+ sensitivity, implying direct interactions of Ca2+ with these residues. Based on these results, we cautiously suggest that the net charge of Nt-CaRes is responsible for the difference in Ca2+ sensitivity between ANO1 and ANO6.
Keywords
anoctamin 6; calcium-binding domain; calcium sensitivity; TMEM16F;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J.C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 321-341.
2 Schroeder, B.C., Cheng, T., Jan, Y.N., and Jan, L.Y. (2008). Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134, 1019-1029.   DOI
3 Schwede, T., Kopp, J., Guex, N., and Peitsch, M.C. (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381-3385.   DOI
4 Scudieri, P., Caci, E., Venturini, A., Sondo, E., Pianigiani, G., Marchetti, C., Ravazzolo, R., Pagani, F., and Galietta, L.J. (2015). Ion channel and lipid scramblase activity associated with expression of TMEM16F/ANO6 isoforms. J. Physiol. 593, 3829-3848.   DOI
5 Soulard, C., Salsac, C., Mouzat, K., Hilaire, C., Roussel, J., Mezghrani, A., Lumbroso, S., Raoul, C., and Scamps, F. (2020). Spinal motoneuron TMEM16F acts at C-boutons to modulate motor resistance and contributes to ALS pathogenesis. Cell Rep. 30, 2581-2593.e7.   DOI
6 Suzuki, J., Umeda, M., Sims, P.J., and Nagata, S. (2010). Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468, 834-838.   DOI
7 Tak, M.H., Jang, Y., Son, W.S., Yang, Y.D., and Oh, U. (2019). EF-hand like region in the N-terminus of anoctamin 1 modulates channel activity by Ca2+ and voltage. Exp. Neurobiol. 28, 658-669.   DOI
8 Terashima, H., Picollo, A., and Accardi, A. (2013). Purified TMEM16A is sufficient to form Ca2+-activated Cl- channels. Proc. Natl. Acad. Sci. U. S. A. 110, 19354-19359.   DOI
9 Xiao, Q., Yu, K., Perez-Cornejo, P., Cui, Y., Arreola, J., and Hartzell, H.C. (2011). Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc. Natl. Acad. Sci. U. S. A. 108, 8891-8896.   DOI
10 Wu, N., Cernysiov, V., Davidson, D., Song, H., Tang, J., Luo, S., Lu, Y., Qian, J., Gyurova, I.E., Waggoner, S.N., et al. (2020). Critical role of lipid scramblase TMEM16F in phosphatidylserine exposure and repair of plasma membrane after pore formation. Cell Rep. 30, 1129-1140.e5.   DOI
11 Yang, H., Kim, A., David, T., Palmer, D., Jin, T., Tien, J., Huang, F., Cheng, T., Coughlin, S.R., Jan, Y.N., et al. (2012). TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 151, 111-122.   DOI
12 Ye, W., Han, T.W., Nassar, L.M., Zubia, M., Jan, Y.N., and Jan, L.Y. (2018). Phosphatidylinositol-(4, 5)-bisphosphate regulates calcium gating of small-conductance cation channel TMEM16F. Proc. Natl. Acad. Sci. U. S. A. 115, E1667-E1674.   DOI
13 Yang, T. and Colecraft, H.M. (2016). Calmodulin regulation of TMEM16A and 16B Ca2+-activated chloride channels. Channels (Austin) 10, 38-44.   DOI
14 Yang, T., Hendrickson, W.A., and Colecraft, H.M. (2014). Preassociated apocalmodulin mediates Ca2+-dependent sensitization of activation and inactivation of TMEM16A/16B Ca2+-gated Cl- channels. Proc. Natl. Acad. Sci. U. S. A. 111, 18213-18218.   DOI
15 Yang, Y.D., Cho, H., Koo, J.Y., Tak, M.H., Cho, Y., Shim, W.S., Park, S.P., Lee, J., Lee, B., Kim, B.M., et al. (2008). TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455, 1210-1215.   DOI
16 Alvadia, C., Lim, N.K., Clerico Mosina, V., Oostergetel, G.T., Dutzler, R., and Paulino, C. (2019). Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F. Elife 8, e44365.   DOI
17 Yu, K., Jiang, T., Cui, Y., Tajkhorshid, E., and Hartzell, H.C. (2019). A network of phosphatidylinositol 4,5-bisphosphate binding sites regulates gating of the Ca2+-activated Cl- channel ANO1 (TMEM16A). Proc. Natl. Acad. Sci. U. S. A. 116, 19952-19962.   DOI
18 Yu, Y. and Chen, T.Y. (2015). Purified human brain calmodulin does not alter the bicarbonate permeability of the ANO1/TMEM16A channel. J. Gen. Physiol. 145, 79-81.   DOI
19 Zaitseva, E., Zaitsev, E., Melikov, K., Arakelyan, A., Marin, M., Villasmil, R., Margolis, L.B., Melikyan, G.B., and Chernomordik, L.V. (2017). Fusion stage of HIV-1 entry depends on virus-induced cell surface exposure of phosphatidylserine. Cell Host Microbe 22, 99-110.e7.   DOI
20 Zhang, Y., Le, T., Grabau, R., Mohseni, Z., Kim, H., Natale, D.R., Feng, L., Pan, H., and Yang, H. (2020). TMEM16F phospholipid scramblase mediates trophoblast fusion and placental development. Sci. Adv. 6, eaba0310.   DOI
21 Benkert, P., Kunzli, M., and Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Res. 37(Web Server issue), W510-W514.   DOI
22 Bethel, N.P. and Grabe, M. (2016). Atomistic insight into lipid translocation by a TMEM16 scramblase. Proc. Natl. Acad. Sci. U. S. A. 113, 14049-14054.   DOI
23 Brunner, J.D., Lim, N.K., Schenck, S., Duerst, A., and Dutzler, R. (2014). X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516, 207-212.   DOI
24 Caputo, A., Caci, E., Ferrera, L., Pedemonte, N., Barsanti, C., Sondo, E., Pfeffer, U., Ravazzolo, R., Zegarra-Moran, O., and Galietta, L.J. (2008). TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322, 590-594.   DOI
25 Dang, S., Feng, S., Tien, J., Peters, C.J., Bulkley, D., Lolicato, M., Zhao, J., Zuberbuhler, K., Ye, W., Qi, L., et al. (2017). Cryo-EM structures of the TMEM16A calcium-activated chloride channel. Nature 552, 426-429.   DOI
26 Darden, T., York, D., and Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089-10092.   DOI
27 Feng, S., Dang, S., Han, T.W., Ye, W., Jin, P., Cheng, T., Li, J., Jan, Y.N., Jan, L.Y., and Cheng, Y. (2019). Cryo-EM studies of TMEM16F calcium-activated ion channel suggest features important for lipid scrambling. Cell Rep. 28, 567-579.e4.   DOI
28 Dhakal, S. and Lee, Y. (2019). Transient receptor potential channels and metabolism. Mol. Cells 42, 569-578.   DOI
29 Ehlen, H.W., Chinenkova, M., Moser, M., Munter, H.M., Krause, Y., Gross, S., Brachvogel, B., Wuelling, M., Kornak, U., and Vortkamp, A. (2013). Inactivation of anoctamin-6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues. J. Bone Miner. Res. 28, 246-259.   DOI
30 Falzone, M.E., Malvezzi, M., Lee, B.C., and Accardi, A. (2018). Known structures and unknown mechanisms of TMEM16 scramblases and channels. J. Gen. Physiol. 150, 933-947.   DOI
31 Grabarek, Z. (2006). Structural basis for diversity of the EF-hand calciumbinding proteins. J. Mol. Biol. 359, 509-525.   DOI
32 Grubb, S., Poulsen, K.A., Juul, C.A., Kyed, T., Klausen, T.K., Larsen, E.H., and Hoffmann, E.K. (2013). TMEM16F (Anoctamin 6), an anion channel of delayed Ca2+ activation. J. Gen. Physiol. 141, 585-600.   DOI
33 Harper, M.T. and Poole, A.W. (2013). Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity. Cell Death Dis. 4, e969.   DOI
34 Hoover, W.G. (1985). Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A Gen. Phys. 31, 1695-1697.   DOI
35 Jung, J., Nam, J.H., Park, H.W., Oh, U., Yoon, J.H., and Lee, M.G. (2013). Dynamic modulation of ANO1/TMEM16A HCO3- permeability by Ca2+/calmodulin. Proc. Natl. Acad. Sci. U. S. A. 110, 360-365.   DOI
36 Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B.L., Grubmuller, H., and MacKerell, A.D., Jr. (2017). CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71-73.   DOI
37 Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics. J. Mol. Graph. 14, 33-38, 27-28.
38 Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L. (1983). Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926-935.   DOI
39 Ko, W., Jung, S.R., Kim, K.W., Yeon, J.H., Park, C.G., Nam, J.H., Hille, B., and Suh, B.C. (2020). Allosteric modulation of alternatively spliced Ca2+-activated Cl- channels TMEM16A by PI(4,5)P2 and CaMKII. Proc. Natl. Acad. Sci. U. S. A. 117, 30787-30798.   DOI
40 Kim, H.J., Jun, I., Yoon, J.S., Jung, J., Kim, Y.K., Kim, W.K., Kim, B.J., Song, J., Kim, S.J., Nam, J.H., et al. (2015). Selective serotonin reuptake inhibitors facilitate ANO6 (TMEM16F) current activation and phosphatidylserine exposure. Pflugers Arch. 467, 2243-2256.   DOI
41 Kunzelmann, K., Nilius, B., Owsianik, G., Schreiber, R., Ousingsawat, J., Sirianant, L., Wanitchakool, P., Bevers, E.M., and Heemskerk, J.W. (2014). Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramblase? Pflugers Arch. 466, 407-414.   DOI
42 Le, S.C., Jia, Z., Chen, J., and Yang, H. (2019). Molecular basis of PIP2-dependent regulation of the Ca2+-activated chloride channel TMEM16A. Nat. Commun. 10, 3769.   DOI
43 Lin, H., Jun, I., Woo, J.H., Lee, M.G., Kim, S.J., and Nam, J.H. (2019). Temperature-dependent increase in the calcium sensitivity and acceleration of activation of ANO6 chloride channel variants. Sci. Rep. 9, 6706.   DOI
44 Lee, J., Cheng, X., Swails, J.M., Yeom, M.S., Eastman, P.K., Lemkul, J.A., Wei, S., Buckner, J., Jeong, J.C., Qi, Y., et al. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405-413.   DOI
45 Lee, S.K. and Ahnn, J. (2020). Regulator of calcineurin (RCAN): beyond Down syndrome critical region. Mol. Cells 43, 671-685.   DOI
46 Liang, P. and Yang, H. (2021). Molecular underpinning of intracellular pH regulation on TMEM16F. J. Gen. Physiol. 153, e202012704.   DOI
47 Paulino, C., Kalienkova, V., Lam, A.K.M., Neldner, Y., and Dutzler, R. (2017). Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM. Nature 552, 421-425.   DOI
48 Lin, H., Roh, J., Woo, J.H., Kim, S.J., and Nam, J.H. (2018). TMEM16F/ANO6, a Ca2+-activated anion channel, is negatively regulated by the actin cytoskeleton and intracellular MgATP. Biochem. Biophys. Res. Commun. 503, 2348-2354.   DOI
49 Nose, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511-519.   DOI
50 Park, W.J., Song, J.H., Kim, G.T., and Park, T.S. (2020). Ceramide and sphingosine 1-phosphate in liver diseases. Mol. Cells 43, 419-430.   DOI
51 Pedemonte, N. and Galietta, L.J. (2014). Structure and function of TMEM16 proteins (anoctamins). Physiol. Rev. 94, 419-459.   DOI
52 Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612.   DOI
53 Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., and Schulten, K. (2005). Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781-1802.   DOI
54 Whitlock, J.M. and Hartzell, H.C. (2017). Anoctamins/TMEM16 proteins: chloride channels flirting with lipids and extracellular vesicles. Annu. Rev. Physiol. 79, 119-143.   DOI
55 Tian, Y., Kongsuphol, P., Hug, M., Ousingsawat, J., Witzgall, R., Schreiber, R., and Kunzelmann, K. (2011). Calmodulin-dependent activation of the epithelial calcium-dependent chloride channel TMEM16A. FASEB J. 25, 1058-1068.   DOI
56 Tien, J., Peters, C.J., Wong, X.M., Cheng, T., Jan, Y.N., Jan, L.Y., and Yang, H. (2014). A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity. Elife 3, e02772.   DOI
57 Vocke, K., Dauner, K., Hahn, A., Ulbrich, A., Broecker, J., Keller, S., Frings, S., and Mohrlen, F. (2013). Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels. J. Gen. Physiol. 142, 381-404.   DOI