Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) and was funded by the Ministry of Education (NRF-2017R1A2B4007327, 2019R1A2C1084311, 2019M3F6A1109486) and by the research fund of Chungnam National University.
References
- Ahmadian, M., Suh, J.M., Hah, N., Liddle, C., Atkins, A.R., Downes, M., and Evans, R.M. (2013). PPARgamma signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557-566. https://doi.org/10.1038/nm.3159
- Armoni, M., Harel, C., Karni, S., Chen, H., Bar-Yoseph, F., Ver, M.R., Quon, M.J., and Karnieli, E. (2006). FOXO1 represses peroxisome proliferatoractivated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity. J. Biol. Chem. 281, 19881-19891. https://doi.org/10.1074/jbc.M600320200
- Basseri, S., Lhotak, S., Fullerton, M.D., Palanivel, R., Jiang, H., Lynn, E.G., Ford, R.J., Maclean, K.N., Steinberg, G.R., and Austin, R.C. (2013). Loss of TDAG51 results in mature-onset obesity, hepatic steatosis, and insulin resistance by regulating lipogenesis. Diabetes 62, 158-169. https://doi.org/10.2337/db12-0256
- Burton, G.R., Nagarajan, R., Peterson, C.A., and McGehee, R.E., Jr. (2004). Microarray analysis of differentiation-specific gene expression during 3T3-L1 adipogenesis. Gene 329, 167-185. https://doi.org/10.1016/j.gene.2003.12.012
- Chandra, V., Huang, P., Hamuro, Y., Raghuram, S., Wang, Y., Burris, T.P., and Rastinejad, F. (2008). Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 456, 350-356. https://doi.org/10.1038/nature07413
- Chen, Y., Takikawa, M., Tsutsumi, S., Yamaguchi, Y., Okabe, A., Shimada, M., Kawase, T., Sada, A., Ezawa, I., Takano, Y., et al. (2018). PHLDA1, another PHLDA family protein that inhibits Akt. Cancer Sci. 109, 3532-3542. https://doi.org/10.1111/cas.13796
- Dowell, P., Otto, T.C., Adi, S., and Lane, M.D. (2003). Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. J. Biol. Chem. 278, 45485-45491. https://doi.org/10.1074/jbc.M309069200
- Elberg, G., Gimble, J.M., and Tsai, S.Y. (2000). Modulation of the murine peroxisome proliferator-activated receptor γ2 promoter activity by CCAAT/enhancer-binding proteins. J. Biol. Chem. 275, 27815-27822. https://doi.org/10.1074/jbc.M003593200
- Fan, W., Imamura, T., Sonoda, N., Sears, D.D., Patsouris, D., Kim, J.J., and Olefsky, J.M. (2009). FOXO1 transrepresses peroxisome proliferatoractivated receptor gamma transactivation, coordinating an insulininduced feed-forward response in adipocytes. J. Biol. Chem. 284, 12188-12197. https://doi.org/10.1074/jbc.M808915200
- Fearon, A.E., Carter, E.P., Clayton, N.S., Wilkes, E.H., Baker, A.M., Kapitonova, E., Bakhouche, B.A., Tanner, Y., Wang, J., Gadaleta, E., et al. (2018). PHLDA1 mediates drug resistance in receptor tyrosine kinase-driven cancer. Cell Rep. 22, 2469-2481. https://doi.org/10.1016/j.celrep.2018.02.028
- Gehring, W.J., Affolter, M., and Burglin, T. (1994). Homeodomain proteins. Annu. Rev. Biochem. 63, 487-526. https://doi.org/10.1146/annurev.bi.63.070194.002415
- Hauser, S., Adelmant, G., Sarraf, P., Wright, H.M., Mueller, E., and Spiegelman, B.M. (2000). Degradation of the peroxisome proliferator-activated receptor gamma is linked to ligand-dependent activation. J. Biol. Chem. 275, 18527-18533. https://doi.org/10.1074/jbc.M001297200
- Hayashida, N., Inouye, S., Fujimoto, M., Tanaka, Y., Izu, H., Takaki, E., Ichikawa, H., Rho, J., and Nakai, A. (2006). A novel HSF1-mediated death pathway that is suppressed by heat shock proteins. EMBO J. 25, 4773-4783. https://doi.org/10.1038/sj.emboj.7601370
- Hossain, G.S., Lynn, E.G., Maclean, K.N., Zhou, J., Dickhout, J.G., Lhotak, S., Trigatti, B., Capone, J., Rho, J., Tang, D., et al. (2013). Deficiency of TDAG51 protects against atherosclerosis by modulating apoptosis, cholesterol efflux, and peroxiredoxin-1 expression. J. Am. Heart Assoc. 2, e000134. https://doi.org/10.1161/JAHA.113.000134
- Hu, E., Kim, J.B., Sarraf, P., and Spiegelman, B.M. (1996). Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 274, 2100-2103. https://doi.org/10.1126/science.274.5295.2100
- Iankova, I., Petersen, R.K., Annicotte, J.S., Chavey, C., Hansen, J.B., Kratchmarova, I., Sarruf, D., Benkirane, M., Kristiansen, K., and Fajas, L. (2006). Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis. Mol. Endocrinol. 20, 1494-1505. https://doi.org/10.1210/me.2005-0222
- Jiao, H.W., Jia, X.X., Zhao, T.J., Rong, H., Zhang, J.N., Cheng, Y., Zhu, H.P., Xu, K.L., Guo, S.Y., Shi, Q.Y., et al. (2016). Up-regulation of TDAG51 is a dependent factor of LPS-induced RAW264.7 macrophages proliferation and cell cycle progression. Immunopharmacol. Immunotoxicol. 38, 124-130. https://doi.org/10.3109/08923973.2016.1138968
- Johnson, E.O., Chang, K.H., de Pablo, Y., Ghosh, S., Mehta, R., Badve, S., and Shah, K. (2011). PHLDA1 is a crucial negative regulator and effector of Aurora A kinase in breast cancer. J. Cell Sci. 124, 2711-2722. https://doi.org/10.1242/jcs.084970
- Juge-Aubry, C., Pernin, A., Favez, T., Burger, A.G., Wahli, W., Meier, C.A., and Desvergne, B. (1997). DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5'-flanking region. J. Biol. Chem. 272, 25252-25259. https://doi.org/10.1074/jbc.272.40.25252
- Kamata, M., Okitsu, Y., Fujiwara, T., Kanehira, M., Nakajima, S., Takahashi, T., Inoue, A., Fukuhara, N., Onishi, Y., Ishizawa, K., et al. (2014). GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells. Haematologica 99, 1686-1696. https://doi.org/10.3324/haematol.2014.105692
- Kim, J.I., Kaufman, R.J., Back, S.H., and Moon, J.Y. (2019). Development of a reporter system monitoring regulated intramembrane proteolysis of the transmembrane bZIP transcription factor ATF6alpha. Mol. Cells 42, 783-793. https://doi.org/10.14348/molcells.2019.0104
- Kim, T.H., Kim, H., Park, J.M., Im, S.S., Bae, J.S., Kim, M.Y., Yoon, H.G., Cha, J.Y., Kim, K.S., and Ahn, Y.H. (2009). Interrelationship between liver X receptor alpha, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor gamma, and small heterodimer partner in the transcriptional regulation of glucokinase gene expression in liver. J. Biol. Chem. 284, 15071-15083. https://doi.org/10.1074/jbc.M109.006742
- Kroker, A.J. and Bruning, J.B. (2015). Review of the structural and dynamic mechanisms of PPARgamma partial agonism. PPAR Res. 2015, 816856. https://doi.org/10.1155/2015/816856
- Lefterova, M.I. and Lazar, M.A. (2009). New developments in adipogenesis. Trends Endocrinol. Metab. 20, 107-114. https://doi.org/10.1016/j.tem.2008.11.005
- Li, G., Wang, X., Hibshoosh, H., Jin, C., and Halmos, B. (2014). Modulation of ErbB2 blockade in ErbB2-positive cancers: the role of ErbB2 Mutations and PHLDA1. PLoS One 9, e106349. https://doi.org/10.1371/journal.pone.0106349
- Miard, S. and Fajas, L. (2005). Atypical transcriptional regulators and cofactors of PPARgamma. Int. J. Obes. (Lond.) 29 Suppl 1, S10-S12. https://doi.org/10.1038/sj.ijo.0802906
- Nagai, M.A. (2016). Pleckstrin homology-like domain, family A, member 1 (PHLDA1) and cancer. Biomed. Rep. 4, 275-281. https://doi.org/10.3892/br.2016.580
- Nakae, J., Kitamura, T., Kitamura, Y., Biggs, W.H., 3rd, Arden, K.C., and Accili, D. (2003). The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell 4, 119-129. https://doi.org/10.1016/S1534-5807(02)00401-X
- Nishizawa, H., Yamagata, K., Shimomura, I., Takahashi, M., Kuriyama, H., Kishida, K., Hotta, K., Nagaretani, H., Maeda, N., Matsuda, M., et al. (2002). Small heterodimer partner, an orphan nuclear receptor, augments peroxisome proliferator-activated receptor gamma transactivation. J. Biol. Chem. 277, 1586-1592. https://doi.org/10.1074/jbc.M104301200
- Park, C.G., Lee, S.Y., Kandala, G., Lee, S.Y., and Choi, Y. (1996). A novel gene product that couples TCR signaling to Fas(CD95) expression in activation-induced cell death. Immunity 4, 583-591. https://doi.org/10.1016/S1074-7613(00)80484-7
- Park, E.S., Choi, S., Shin, B., Yu, J., Hwang, J.M., Yun, H., Chung, Y.H., Choi, J.S., Choi, Y., and Rho, J. (2015). Tumor necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein (TRIP) negatively regulates the TRAF2 ubiquitin-dependent pathway by suppressing the TRAF2-sphingosine 1-phosphate (S1P) interaction. J. Biol. Chem. 290, 9660-9673. https://doi.org/10.1074/jbc.M114.609685
- Park, E.S., Kim, J., Ha, T.U., Choi, J.S., Soo Hong, K., and Rho, J. (2013). TDAG51 deficiency promotes oxidative stress-induced apoptosis through the generation of reactive oxygen species in mouse embryonic fibroblasts. Exp. Mol. Med. 45, e35. https://doi.org/10.1038/emm.2013.67
- Park, M.J., Kong, H.J., Kim, H.Y., Kim, H.H., Kim, J.H., and Cheong, J.H. (2007). Transcriptional repression of the gluconeogenic gene PEPCK by the orphan nuclear receptor SHP through inhibitory interaction with C/EBPalpha. Biochem. J. 402, 567-574. https://doi.org/10.1042/BJ20061549
- Pascual, G., Fong, A.L., Ogawa, S., Gamliel, A., Li, A.C., Perissi, V., Rose, D.W., Willson, T.M., Rosenfeld, M.G., and Glass, C.K. (2005). A SUMOylationdependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437, 759-763. https://doi.org/10.1038/nature03988
- Qiao, L. and Shao, J. (2006). SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J. Biol. Chem. 281, 39915-39924. https://doi.org/10.1074/jbc.M607215200
- Rosen, E., Eguchi, J., and Xu, Z. (2009). Transcriptional targets in adipocyte biology. Expert Opin. Ther. Targets 13, 975-986. https://doi.org/10.1517/14728220903039706
- Rosen, E.D., Hsu, C.H., Wang, X., Sakai, S., Freeman, M.W., Gonzalez, F.J., and Spiegelman, B.M. (2002). C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 16, 22-26. https://doi.org/10.1101/gad.948702
- Saladin, R., Fajas, L., Dana, S., Halvorsen, Y.D., Auwerx, J., and Briggs, M. (1999). Differential regulation of peroxisome proliferator activated receptor gamma1 (PPARgamma1) and PPARgamma2 messenger RNA expression in the early stages of adipogenesis. Cell Growth Differ. 10, 43-48.
- Sarjeant, K. and Stephens, J.M. (2012). Adipogenesis. Cold Spring Harb. Perspect. Biol. 4, a008417. https://doi.org/10.1101/cshperspect.a008417
- Scheffzek, K. and Welti, S. (2012). Pleckstrin homology (PH) like domains - versatile modules in protein-protein interaction platforms. FEBS Lett. 586, 2662-2673. https://doi.org/10.1016/j.febslet.2012.06.006
- Son, H.E., Min, H.Y., Kim, E.J., and Jang, W.G. (2020). Fat mass and obesityassociated (FTO) stimulates osteogenic differentiation of C3H10T1/2 cells by inducing mild endoplasmic reticulum stress via a positive feedback loop with p-AMPK. Mol. Cells 43, 58-65. https://doi.org/10.14348/molcells.2019.0136
- Tanaka, T., Yoshida, N., Kishimoto, T., and Akira, S. (1997). Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J. 16, 7432-7443. https://doi.org/10.1093/emboj/16.24.7432
- Tong, Q., Dalgin, G., Xu, H., Ting, C.N., Leiden, J.M., and Hotamisligil, G.S. (2000). Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 290, 134-138. https://doi.org/10.1126/science.290.5489.134
- Tontonoz, P., Hu, E., Graves, R.A., Budavari, A.I., and Spiegelman, B.M. (1994). mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224-1234. https://doi.org/10.1101/gad.8.10.1224
- Waite, K.J., Floyd, Z.E., Arbour-Reily, P., and Stephens, J.M. (2001). Interferon-gamma-induced regulation of peroxisome proliferator-activated receptor gamma and STATs in adipocytes. J. Biol. Chem. 276, 7062-7068. https://doi.org/10.1074/jbc.M007894200
- Wu, Z., Bucher, N.L., and Farmer, S.R. (1996). Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol. Cell. Biol. 16, 4128-4136. https://doi.org/10.1128/MCB.16.8.4128
- Wu, Z., Rosen, E.D., Brun, R., Hauser, S., Adelmant, G., Troy, A.E., McKeon, C., Darlington, G.J., and Spiegelman, B.M. (1999). Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 3, 151-158. https://doi.org/10.1016/S1097-2765(00)80306-8
- Xiao, H. and Jeang, K.T. (1998). Glutamine-rich domains activate transcription in yeast Saccharomyces cerevisiae. J. Biol. Chem. 273, 22873-22876. https://doi.org/10.1074/jbc.273.36.22873
- Yamagata, K., Daitoku, H., Shimamoto, Y., Matsuzaki, H., Hirota, K., Ishida, J., and Fukamizu, A. (2004). Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J. Biol. Chem. 279, 23158-23165. https://doi.org/10.1074/jbc.M314322200
- Yu, J., Yun, H., Shin, B., Kim, Y., Park, E.S., Choi, S., Yu, J., Amarasekara, D.S., Kim, S., Inoue, J., et al. (2016). Interaction of tumor necrosis factor receptorassociated factor 6 (TRAF6) and Vav3 in the receptor activator of nuclear factor kappaB (RANK) signaling complex enhances osteoclastogenesis. J. Biol. Chem. 291, 20643-20660. https://doi.org/10.1074/jbc.M116.728303
Cited by
- Pax5 Negatively Regulates Osteoclastogenesis through Downregulation of Blimp1 vol.22, pp.4, 2021, https://doi.org/10.3390/ijms22042097