DOI QR코드

DOI QR Code

Mid-course Trajectory Optimization for Boost-Glide Missiles Based on Convex Programming

컨벡스 프로그래밍을 이용한 추진-활공 유도탄의 중기궤적 최적화

  • Received : 2020.09.04
  • Accepted : 2020.12.07
  • Published : 2021.01.01

Abstract

Mid-course trajectory of the missiles equipped with seeker should be designed to detect target within FOV of seeker and to maximize the maneuverability at the point of transition to terminal guidance phase. Because the trajectory optimization problems are generally hard to obtain the analytic solutions due to its own nonlinearity with several constraints, the various numerical methods have been presented so far. In this paper, mid-course trajectory optimization problem for boost-glide missiles is calculated by using SOCP (Second-Order Cone Programming) which is one of convex optimization methods. At first, control variable augmentation scheme with a control constraint is suggested to reduce state variables of missile dynamics. And it is reformulated using a normalized time approach to cope with a free final time problem and boost time problem. Then, partial linearization and lossless convexification are used to convexify dynamic equation and control constraint, respectively. Finally, the results of the proposed method are compared with those of state-of-the-art nonlinear optimization method for verification.

탐색기를 탑재한 유도탄의 중기궤적은 탐색기 시야(FOV : Field-Of-View) 내에서 표적을 탐지하며, 전환 시점에서의 기동성을 최대화하도록 설계하는 것이 요구된다. 유도탄의 비행궤적 최적화 문제는 여러 구속조건이 적용된 비선형 문제로 일반적인 해석해를 도출하기 어렵기 때문에 그 동안 다양한 계산적인 방법들이 제시되어 왔다. 본 논문에서는 추진-활공 유도탄의 중기궤적 최적화 문제를 컨벡스 최적화 기법인 2차 원뿔 프로그래밍을 이용하여 산출하였다. 먼저, 운동방정식의 상태변수를 최소화하기 위해서 제어변수 구속조건이 추가된 제어변수 추가 형태의 운동방정식을 구성하였다. 또한, 자유 종말시간 문제와 추진시간 문제를 대처하기 위하여 정규화된 시간 변수를 독립 변수로 설정하였다. 그리고, 운동방정식과 제어변수 구속조건을 컨벡스 형태로 변환하기 위하여 각각 부분 선형화와 무손실 컨벡스 변환을 적용하였다. 마지막으로, 본 논문에서 제시된 방안의 타당성을 확인하기 위하여 비선형 최적화 프로그래밍 결과와 비교하였다.

Keywords

References

  1. Bryson, A. E., "Linear Feedback Solutions for Minimum Effort Interception, Rendezvous, and Soft Landing," AIAA Journal, Vol. 3, No. 8, 1965, pp. 1542-1544. https://doi.org/10.2514/3.3199
  2. Cho, H., "Navigation Constants in PNG Law and the Associated Optimal Control Problems," Proceedings of the Korean Automatic Control Conference, Seoul, Korea, 1992, pp. 578-583.
  3. Ryoo, C. K., Cho, H. and Tahk, M. J., "Optimal Guidance Laws with Terminal Impact Angle Constraint," Journal of Guidance, Control, and Dynamics, Vol. 28, No. 4, 2005, pp. 724-732. https://doi.org/10.2514/1.8392
  4. Ratnoo, A. and Ghose, D., "Impact Angle Constrained Guidance Against Nonstationary Nonmaneuvering Targets," Journal of Guidance, Control, and Dynamics, Vol. 33, No. 1, 2010, 269-275. https://doi.org/10.2514/1.45026
  5. Kim, T. H., Park, B. G. and Tahk, M. J., "Bias-Shaping Method for Biased Proportional Navigation with Terminal-Angle Constraint," Journal of Guidance, Control, and Dynamics, Vol. 36, No. 6, 2013, pp. 1810-1816. https://doi.org/10.2514/1.59252
  6. Han, S. Y., Bai, J. H., Hong, S. M., Roh, H. K., Tahk, M. J., Yun, J. S. and Park, S. H., "Guidance Law for Agile Turn of Air-to-Air Missile During Boost Phase," International Journal of Aeronautical and Space Sciences, Vol. 18, No. 4, 2017, pp. 709-718. https://doi.org/10.5139/IJASS.2017.18.4.709
  7. Jeon, I. S., Karpenko, M. and Lee, J. I., "Connections Between Proportional Navigation and Terminal Velocity Maximization Guidance," Journal of Guidance, Control, and Dynamics, Vol. 43, No. 4, 2019, pp. 1-6.
  8. Hull, D. G., "Conversion of Optimal Control Problems Into Parameter Optimization Problems," Journal of Guidance, Control, and Dynamics, Vol. 20, No. 1, 1997, pp. 57-60. https://doi.org/10.2514/2.4033
  9. Hargraves, C. R. and Paris, S. W., "Direct Trajectory Optimization Using Nonlinear Programming and Collocation," Journal of Guidance, Control, and Dynamics, Vol. 10, No. 4, 1987. pp. 338-342. https://doi.org/10.2514/3.20223
  10. Betts, J. T., "Survey of Numerical Methods for Trajectory Optimization," Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998.
  11. Fahroo, F. and Ross I. M., "Direct Trajectory Optimization by a Chebyshev Pseudospectral Method," Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1, 2002, pp. 160-166. https://doi.org/10.2514/2.4862
  12. Acikmese, B. and Ploen, S. R., "Convex Programming Approach to Powered Descent Guidance for Mar Landing," Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5, 2007, pp. 1353-1366. https://doi.org/10.2514/1.27553
  13. Liu, X. and Lu, P., "Solving Nonconvex Optimal Control Problems by Convex Optimization," Journal of Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 750-765. https://doi.org/10.2514/1.62110
  14. Liu, X., Shen, Z. and Lu, P., "Entry Trajectory Optimization by Second-Order Cone Programming," Journal of Guidance, Control, and Dynamics, Vol. 39, No. 2, 2016, pp. pp. 227-241. https://doi.org/10.2514/1.G001210
  15. Liu, X., Shen, Z. and Lu, P., "Exact Convex Relaxation for Optimal Flight of Aerodynamically Controlled Missiles," IEEE Transaction on Aerospace and Electronic Systems, Vol. 52, No. 4, 2016, pp. 1881-892. https://doi.org/10.1109/TAES.2016.150741
  16. Roh, H. K., Oh, Y. J., Tahk, M. J., Kwon, K. J. and Kwon, H. H., "L1 Penalized Sequential Convex Programming for Fast Trajectory Optimization: with Application to Optimal Missile Guidance," International Journal of Aeronautical and Space Sciences, Vol. 21, No. 2, 2020, pp. 493-03. https://doi.org/10.1007/s42405-019-00230-0
  17. Kwon, H. H. and Choi, H. L., "A Convex Programming Approach to Mid-Course Trajectory Optimization for Air-to-Ground Missiles," International Journal of Aeronautical and Space Sciences, Vol. 21, No. 2, 2020, pp. 479-92. https://doi.org/10.1007/s42405-019-00219-9
  18. Harris, M. W. and Acikmese, B., "Lossless Convexification for a Class of Optimal Control Problems with Quadratic State Constraints," American Control Conference, June 2013.
  19. Harris, M. W. and Acikmese, B., "Lossless Convexification of a Non-convex Optimal Control Problems for State Constrained Linear Systems," Automatica, Vol. 50, Issue 9, 2014, pp. 2304-2311. https://doi.org/10.1016/j.automatica.2014.06.008
  20. Patterson, M A. and Rao, A. V., "GPOPS-II : A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming," ACM Transactions on Mathematical Software, Vol. 41, No. 1, 2014.
  21. Wachter, A., An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Application in Process Engineering, Ph.D Dissertation, 2002.