DOI QR코드

DOI QR Code

Magnetic Resonance Imaging Meets Fiber Optics: a Brief Investigation of Multimodal Studies on Fiber Optics-Based Diagnostic / Therapeutic Techniques and Magnetic Resonance Imaging

  • Choi, Jong-ryul (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Oh, Sung Suk (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
  • 투고 : 2021.06.22
  • 심사 : 2021.09.17
  • 발행 : 2021.12.30

초록

Due to their high degree of freedom to transfer and acquire light, fiber optics can be used in the presence of strong magnetic fields. Hence, optical sensing and imaging based on fiber optics can be integrated with magnetic resonance imaging (MRI) diagnostic systems to acquire valuable information on biological tissues and organs based on a magnetic field. In this article, we explored the combination of MRI and optical sensing/imaging techniques by classifying them into the following topics: 1) functional near-infrared spectroscopy with functional MRI for brain studies and brain disease diagnoses, 2) integration of fiber-optic molecular imaging and optogenetic stimulation with MRI, and 3) optical therapeutic applications with an MRI guidance system. Through these investigations, we believe that a combination of MRI and optical sensing/imaging techniques can be employed as both research methods for multidisciplinary studies and clinical diagnostic/therapeutic devices.

키워드

과제정보

This study was supported from a grant (NRF-2020R1C1C1012230) of the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science & ICT. This work was also supported by a grant (HI17C1501) of the Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare, Republic of Korea.

참고문헌

  1. Park JK, Hong DY, Jin ST, Lee DW, Pyun HW. Leak sign on dynamic-susceptibility-contrast magnetic resonance imaging in acute intracerebral hemorrhage. Investig Magn Reson Imaging 2020;24:154-161 https://doi.org/10.13104/imri.2020.24.3.154
  2. Jung DY, Lee EJ, Bae JM, Choi YJ, Lee, EK, Kim DB. Differentiation between glioblastoma and solitary metastasis: morphologic assessment by conventional brain MR imaging and diffusion-weighted imaging. Investig Magn Reson Imaging 2021;25:23-34 https://doi.org/10.13104/imri.2021.25.1.23
  3. Oh CH, Kang WY, Lee OJ. Langerhans cell histiocytosis of the rib of an adult female patient: a case report. Investg Magn Reson Imaging 2020;24:61-65 https://doi.org/10.13104/imri.2020.24.1.61
  4. Rosenberg SA, Henke LE, Shaverdian N, et al. A Multi-Institutional Experience of MR-Guided Liver Stereotactic Body Radiation Therapy. Adv Radiat Oncol 2019;4:142-149 https://doi.org/10.1016/j.adro.2018.08.005
  5. Wang W, Dumoulin CL, Viswanathan AN, et al. Real-time active MR-tracking of metallic stylets in MR-guided radiation therapy. Magn Reson Med 2015;73:1803-1811 https://doi.org/10.1002/mrm.25300
  6. Cash RFH, Cocchi L, Lv J, Fitzgerald PB, Zalesky A. Functional Magnetic Resonance Imaging-Guided Personalization of Transcranial Magnetic Stimulation Treatment for Depression. JAMA Psychiatry 2021;78:337-339 https://doi.org/10.1001/jamapsychiatry.2020.3794
  7. Pozzi E, Vijayakumar N, Rakesh D, Whittle S. Neural Correlates of Emotion Regulation in Adolescents and Emerging Adults: A Meta-analytic Study. Biol Psychiatry 2021;89:194-204 https://doi.org/10.1016/j.biopsych.2020.08.006
  8. Seo HS, Jang KE, Wang D, Kim IS, Chang Y. Accelerated resting-state functional magnetic resonance imaging using multiband echo-planar imaging with controlled aliasing. Investig Magn Reson Imaging 2017;21:223-232 https://doi.org/10.13104/imri.2017.21.4.223
  9. Hassel S, Sharma GB, Alders GL, et al. Reliability of a functional magnetic resonance imaging task of emotional conflict in healthy participants. Hum Brain Mapp 2020;41:1400-1415 https://doi.org/10.1002/hbm.24883
  10. Meinhold W, Martinez DE, Oshinski J, Hu AP, Ueda J. A direct drive parallel plane piezoelectric needle positioning robot for MRI guided intraspinal injection. IEEE Trans Biomed Eng 2021;68:807-814 https://doi.org/10.1109/TBME.2020.3020926
  11. Kim Y, Cheng SS, Diakite M, Gullapalli RP, Simard JM, Desai JP. Toward the development of a flexible mesoscale MRI-compatible neurosurgical continuum robot. IEEE Trans Robot 2017;33:1386-1397 https://doi.org/10.1109/TRO.2017.2719035
  12. Ghai S, Finelli A, Corr K, et al. MRI-guided focused ultrasound ablation for localized intermediate-risk prostate cancer: early results of a phase II trial. Radiology 2021;298:695-703 https://doi.org/10.1148/radiol.2021202717
  13. LeBlang SD, Hoctor K, Steinberg FL. Leiomyoma shrinkage after MRI-guided focused ultrasound treatment: report of 80 patients. AJR Am J Roentgenol 2010;194:274-280 https://doi.org/10.2214/AJR.09.2842
  14. Pauly KB, Diederich CJ, Rieke V, et al. Magnetic resonance-guided high-intensity ultrasound ablation of the prostate. Top Magn Reson Imaging 2006;17:195-207 https://doi.org/10.1097/RMR.0b013e31803774dd
  15. H?hne J, Schebesch KM, Zoubaa S, Proescholdt M, Riemenschneider MJ, Schmidt NO. Intraoperative imaging of brain tumors with fluorescein: confocal laser endomicroscopy in neurosurgery. Clinical and user experience. Neurosurg Focus 2021;50:E19
  16. Sun Y, Hatami N, Yee M, et al. Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery. J Biomed Opt 2010;15:056022 https://doi.org/10.1117/1.3486612
  17. Ahn H, Song H, Shin DM, Kim K, Choi J. Emerging optical spectroscopy techniques for biomedical applications - a brief review of recent progress. Appl Spectrosc Rev 2018;53: 264-278 https://doi.org/10.1080/05704928.2017.1324877
  18. Choi JR, Song H, Sung JH, Kim D, Kim K. Microfluidic assay-based optical measurement techniques for cell analysis: a review of recent progress. Biosens Bioelectron 2016;77:227-236 https://doi.org/10.1016/j.bios.2015.07.068
  19. Zou Y, Chau FS, Zhou G. Ultra-compact optical zoom endoscope using solid tunable lenses. Opt Express 2017;25:20675-20688 https://doi.org/10.1364/OE.25.020675
  20. He Z, Zhou L, Luo B, Hu B, Du X, Li Y. Multifunction medical endoscope system with optical fiber temperature sensor. Proc SPIE 2014:9216
  21. Nedoma J, Kepak S, Fajkus M, et al. Magnetic Resonance Imaging Compatible Non-Invasive Fibre-Optic Sensors Based on the Bragg Gratings and Interferometers in the Application of Monitoring Heart and Respiration Rate of the Human Body: A Comparative Study. Sensors (Basel) 2018;18
  22. Bunce SC, Izzetoglu M, Izzetoglu K, Onaral B, Pourrezaei K. Functional near-infrared spectroscopy. IEEE Eng Med Biol Mag 2006;25:54-62 https://doi.org/10.1109/MEMB.2006.1657788
  23. Scholkmann F, Kleiser S, Metz AJ, et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014;85 Pt 1:6-27 https://doi.org/10.1016/j.neuroimage.2013.05.004
  24. Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 2012;63:921-935 https://doi.org/10.1016/j.neuroimage.2012.03.049
  25. Nguyen HD, Hong KS, Shin YI. Bundled-Optode Method in Functional Near-Infrared Spectroscopy. PLoS One 2016;11:e0165146 https://doi.org/10.1371/journal.pone.0165146
  26. Steinbrink J, Villringer A, Kempf F, Haux D, Boden S, Obrig H. Illuminating the BOLD signal: combined fMRI-fNIRS studies. Magn Reson Imaging 2006;24:495-505 https://doi.org/10.1016/j.mri.2005.12.034
  27. Gagnon L, Yucel MA, Dehaes M, et al. Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements. Neuroimage 2012;59:3933-3940 https://doi.org/10.1016/j.neuroimage.2011.10.054
  28. Duan L, Zhang YJ, Zhu CZ. Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study. Neuroimage 2012;60:2008-2018 https://doi.org/10.1016/j.neuroimage.2012.02.014
  29. Yuan Z, Ye J. Fusion of fNIRS and fMRI data: identifying when and where hemodynamic signals are changing in human brains. Front Hum Neurosci 2013;7:676 https://doi.org/10.3389/fnhum.2013.00676
  30. Chen M, Blumen HM, Izzetoglu M, Holtzer R. Spatial Coregistration of Functional Near-Infrared Spectroscopy to Brain MRI. J Neuroimaging 2017;27:453-460 https://doi.org/10.1111/jon.12432
  31. Funane T, Sato H, Yahata N, et al. Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes. Neurophotonics 2015;2:015003 https://doi.org/10.1117/1.NPh.2.1.015003
  32. Liu Y, Piazza EA, Simony E, et al. Measuring speaker-listener neural coupling with functional near infrared spectroscopy. Sci Rep 2017;7:43293 https://doi.org/10.1038/srep43293
  33. Amyot F, Kenney K, Spessert E, et al. Assessment of cerebrovascular dysfunction after traumatic brain injury with fMRI and fNIRS. Neuroimage Clin 2020;25:102086 https://doi.org/10.1016/j.nicl.2019.102086
  34. Matarasso AK, Rieke JD, White K, Yusufali MM, Daly JJ. Combined real-time fMRI and real time fNIRS brain computer interface (BCI): Training of volitional wrist extension after stroke, a case series pilot study. PLoS One 2021;16:e0250431 https://doi.org/10.1371/journal.pone.0250431
  35. Rieke JD, Matarasso AK, Yusufali MM, et al. Development of a combined, sequential real-time fMRI and fNIRS neurofeedback system to enhance motor learning after stroke. J Neurosci Methods 2020;341:108719 https://doi.org/10.1016/j.jneumeth.2020.108719
  36. Behroozi M, Helluy X, Strockens F, et al. Event-related functional MRI of awake behaving pigeons at 7T. Nat Commun 2020;11:4715 https://doi.org/10.1038/s41467-020-18437-1
  37. Jung WB, Shim HJ, Kim SG. Mouse BOLD fMRI at ultrahigh field detects somatosensory networks including thalamic nuclei. Neuroimage 2019;195:203-214 https://doi.org/10.1016/j.neuroimage.2019.03.063
  38. Grandjean J, Canella C, Anckaerts C, et al. Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis. Neuroimage 2020;205:116278 https://doi.org/10.1016/j.neuroimage.2019.116278
  39. Kaszas A, Szalay G, Slezia A, et al. Two-photon GCaMP6f imaging of infrared neural stimulation evoked calcium signals in mouse cortical neurons in vivo. Sci Rep 2021;11:9775 https://doi.org/10.1038/s41598-021-89163-x
  40. Yang Y, Liu N, He Y, et al. Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP. Nat Commun 2018;9:1504 https://doi.org/10.1038/s41467-018-03719-6
  41. Knopfel T, Song C. Optical voltage imaging in neurons: moving from technology development to practical tool. Nat Rev Neurosci 2019;20:719-727 https://doi.org/10.1038/s41583-019-0231-4
  42. Kannan M, Vasan G, Huang C, et al. Fast, in vivo voltage imaging using a red fluorescent indicator. Nat Methods 2018;15:1108-1116 https://doi.org/10.1038/s41592-018-0188-7
  43. Kunori N, Takashima I. An Implantable Cranial Window Using a Collagen Membrane for Chronic Voltage-Sensitive Dye Imaging. Micromachines (Basel) 2019;10
  44. Cramer JV, Gesierich B, Roth S, Dichgans M, During M, Liesz A. In vivo widefield calcium imaging of the mouse cortex for analysis of network connectivity in health and brain disease. Neuroimage 2019;199:570-584 https://doi.org/10.1016/j.neuroimage.2019.06.014
  45. Takashima I, Ichikawa M, Iijima T. High-speed CCD imaging system for monitoring neural activity in vivo and in vitro, using a voltage-sensitive dye. J Neurosci Methods 1999;91:147-159 https://doi.org/10.1016/S0165-0270(99)00093-X
  46. Schulz K, Sydekum E, Krueppel R, et al. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat Methods 2012;9:597-602 https://doi.org/10.1038/nmeth.2013
  47. Liang Z, Ma Y, Watson GDR, Zhang N. Simultaneous GCaMP6-based fiber photometry and fMRI in rats. J Neurosci Methods 2017;289:31-38 https://doi.org/10.1016/j.jneumeth.2017.07.002
  48. Schlegel F, Sych Y, Schroeter A, et al. Fiber-optic implant for simultaneous fluorescence-based calcium recordings and BOLD fMRI in mice. Nat Protoc 2018;13:840-855 https://doi.org/10.1038/nprot.2018.003
  49. Lake EMR, Ge X, Shen X, et al. Simultaneous cortex-wide fluorescence Ca(2+) imaging and whole-brain fMRI. Nat Methods 2020;17:1262-1271 https://doi.org/10.1038/s41592-020-00984-6
  50. Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 2003;100:13940-13945 https://doi.org/10.1073/pnas.1936192100
  51. Kim CK, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 2017;18:222-235 https://doi.org/10.1038/nrn.2017.15
  52. Song C, Knopfel T. Optogenetics enlightens neuroscience drug discovery. Nat Rev Drug Discov 2016;15:97-109 https://doi.org/10.1038/nrd.2015.15
  53. Desai M, Kahn I, Knoblich U, et al. Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 2011;105:1393-1405 https://doi.org/10.1152/jn.00828.2010
  54. Kahn I, Desai M, Knoblich U, et al. Characterization of the functional MRI response temporal linearity via optical control of neocortical pyramidal neurons. J Neurosci 2011;31:15086-15091 https://doi.org/10.1523/JNEUROSCI.0007-11.2011
  55. Abe Y, Sekino M, Terazono Y, et al. Opto-fMRI analysis for exploring the neuronal connectivity of the hippocampal formation in rats. Neurosci Res 2012;74:248-255 https://doi.org/10.1016/j.neures.2012.08.007
  56. Li N, van Zijl P, Thakor N, Pelled G. Study of the spatial correlation between neuronal activity and BOLD fMRI responses evoked by sensory and channelrhodopsin-2 stimulation in the rat somatosensory cortex. J Mol Neurosci 2014;53:553-561
  57. Christie IN, Wells JA, Southern P, et al. fMRI response to blue light delivery in the naive brain: implications for combined optogenetic fMRI studies. Neuroimage 2013;66:634-641 https://doi.org/10.1016/j.neuroimage.2012.10.074
  58. Lebhardt P, Hohenberg CC, Weber-Fahr W, Kelsch W, Sartorius A. Optogenetic fMRI in the mouse hippocampus: Hemodynamic response to brief glutamatergic stimuli. J Cereb Blood Flow Metab 2016;36:629-638 https://doi.org/10.1177/0271678X15606455
  59. Chen Y, Pais-Roldan P, Chen X, Frosz MH, Yu X. MRI-guided robotic arm drives optogenetic fMRI with concurrent Ca(2+) recording. Nat Commun 2019;10:2536 https://doi.org/10.1038/s41467-019-10450-3
  60. Chen X, Sobczak F, Chen Y, et al. Mapping optogeneticallydriven single-vessel fMRI with concurrent neuronal calcium recordings in the rat hippocampus. Nat Commun 2019;10:5239 https://doi.org/10.1038/s41467-019-12850-x
  61. Monfaredi R, Cleary K, Sharma K. MRI Robots for Needle-Based Interventions: Systems and Technology. Ann Biomed Eng 2018;46:1479-1497 https://doi.org/10.1007/s10439-018-2075-x
  62. Schwarzmaier HJ, Eickmeyer F, Fiedler VU, Ulrich F. Basic principles of laser induced interstitial thermotherapy in brain tumors. Med Laser Appl 2002;17:147-158 https://doi.org/10.1078/1615-1615-00057
  63. Quesson B, de Zwart JA, Moonen CT. Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 2000;12:525-533 https://doi.org/10.1002/1522-2586(200010)12:4<525::AID-JMRI3>3.0.CO;2-V
  64. Schwarzmaier HJ, Eickmeyer F, von Tempelhoff W, et al. MR-guided laser irradiation of recurrent glioblastomas. J Magn Reson Imaging 2005;22:799-803 https://doi.org/10.1002/jmri.20446
  65. Schwarzmaier HJ, Eickmeyer F, von Tempelhoff W, et al. MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: preliminary results in 16 patients. Eur J Radiol 2006;59:208-215 https://doi.org/10.1016/j.ejrad.2006.05.010
  66. Carpentier A, McNichols RJ, Stafford RJ, et al. Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery 2008;63:ONS21-28; discussion ONS28-29 https://doi.org/10.1227/01.NEU.0000311254.63848.72
  67. Hawasli AH, Bagade S, Shimony JS, Miller-Thomas M, Leuthardt EC. Magnetic resonance imaging-guided focused laser interstitial thermal therapy for intracranial lesions: single-institution series. Neurosurgery 2013;73:1007-1017 https://doi.org/10.1227/NEU.0000000000000144
  68. Jethwa PR, Barrese JC, Gowda A, Shetty A, Danish SF. Magnetic resonance thermometry-guided laser-induced thermal therapy for intracranial neoplasms: initial experience. Neurosurgery 2012;71:133-144; 144-135
  69. Candela-Canto S, Alamar M, Alaez C, et al. Highly realistic simulation for robot-assisted hypothalamic hamartoma real-time MRI-guided laser interstitial thermal therapy (LITT). Childs Nerv Syst 2020;36:1131-1142 https://doi.org/10.1007/s00381-020-04563-0
  70. Ginalis EE, Danish SF. Magnetic resonance-guided laser interstitial thermal therapy for brain tumors in geriatric patients. Neurosurg Focus 2020;49:E12 https://doi.org/10.3171/2020.7.FOCUS20462
  71. Arocho-Quinones EV, Lew SM, Handler MH, et al. Magnetic resonance-guided stereotactic laser ablation therapy for the treatment of pediatric brain tumors: a multiinstitutional retrospective study. J Neurosurg Pediatr 2020:1-9
  72. Brown MG, Drees C, Nagae LM, Thompson JA, Ojemann S, Abosch A. Curative and palliative MRI-guided laser ablation for drug-resistant epilepsy. J Neurol Neurosurg Psychiatry 2018;89:425-433 https://doi.org/10.1136/jnnp-2017-316003
  73. Lee EJ, Kalia SK, Hong SH. A Primer on Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for Medically Refractory Epilepsy. J Korean Neurosurg Soc 2019;62:353-360 https://doi.org/10.3340/jkns.2019.0105
  74. Gupta K, Cabaniss B, Kheder A, et al. Stereotactic MRI-guided laser interstitial thermal therapy for extratemporal lobe epilepsy. Epilepsia 2020;61:1723-1734 https://doi.org/10.1111/epi.16614
  75. Gupta K, Dickey AS, Hu R, Faught E, Willie JT. Robot Assisted MRI-Guided LITT of the Anterior, Lateral, and Medial Temporal Lobe for Temporal Lobe Epilepsy. Front Neurol 2020;11:572334 https://doi.org/10.3389/fneur.2020.572334
  76. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003;3:380-387 https://doi.org/10.1038/nrc1071
  77. Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother 2018;106:1098-1107 https://doi.org/10.1016/j.biopha.2018.07.049
  78. Gross S, Gilead A, Scherz A, Neeman M, Salomon Y. Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI. Nat Med 2003;9:1327-1331 https://doi.org/10.1038/nm940
  79. Leroy HA, Vermandel M, Leroux B, et al. MRI assessment of treatment delivery for interstitial photodynamic therapy of high-grade glioma in a preclinical model. Lasers Surg Med 2018;50:460-468 https://doi.org/10.1002/lsm.22744
  80. Bechet D, Auger F, Couleaud P, et al. Multifunctional ultrasmall nanoplatforms for vascular-targeted interstitial photodynamic therapy of brain tumors guided by real-time MRI. Nanomedicine 2015;11:657-670 https://doi.org/10.1016/j.nano.2014.12.007
  81. Xie W, Guo Z, Gao Q et al. Manganese-doped layered double hydroxide: a biodegradable theranostic nanoplatform with tumor microenvironment response for magnetic resonance imaging-guided photothermal therapy. ACS Appl Bio Mater 2020;3:5845-5855 https://doi.org/10.1021/acsabm.0c00564
  82. Anwar AR, Muthalib M, Perrey S, et al. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study. Brain Topogr 2016;29:645-660 https://doi.org/10.1007/s10548-016-0507-1
  83. Pouliot P, Tremblay J, Robert M, et al. Nonlinear hemodynamic responses in human epilepsy: a multimodal analysis with fNIRS-EEG and fMRI-EEG. J Neurosci Methods 2012;204:326-340 https://doi.org/10.1016/j.jneumeth.2011.11.016
  84. D?hne S, Biessmann F, Samek W, et al. Multivariate machine learning methods for fusing multimodal functional neuroimaging data. Proc IEEE 2015;103:1507-1530 https://doi.org/10.1109/JPROC.2015.2425807
  85. Abbasi A, Goueytes D, Shulz DE, Ego-Stengel V, Estebanez L. A fast intracortical brain-machine interface with patterned optogenetic feedback. J Neural Eng 2018;15:046011 https://doi.org/10.1088/1741-2552/15/4/046011