DOI QR코드

DOI QR Code

KF-1607, a Novel Pan Src Kinase Inhibitor, Attenuates Obstruction-Induced Tubulointerstitial Fibrosis in Mice

  • Dorotea, Debra (Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University) ;
  • Lee, Seungyeon (New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation) ;
  • Lee, Sun Joo (New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation) ;
  • Lee, Gayoung (Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University) ;
  • Son, Jung Beom (New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation) ;
  • Choi, Hwan Geun (New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation) ;
  • Ahn, Sung-Min (Department of Genome Medicine and Science, College of Medicine, Gachon University) ;
  • Ha, Hunjoo (Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University)
  • Received : 2020.05.18
  • Accepted : 2020.06.04
  • Published : 2021.01.01

Abstract

Src family kinases (SFKs), an important group of non-receptor tyrosine kinases, are suggested to be excessively activated during various types of tissue fibrosis. The present study investigated the effect of KF-1607, an orally active and a newly synthesized Src kinase inhibitor (SKI) with proposed low toxicity, in preventing the progression of renal interstitial fibrosis. Unilateral ureteral obstruction (UUO) surgery was performed in 6-week-old male C57BL/6 mice to induce renal interstitial fibrosis. Either KF-1607 (30 mg/kg, oral gavage) or PP2 (2 mg/kg, intraperitoneal injection), a common experimental SKI, was administered to mice for seven days, started one day prior to surgery. UUO injury-induced SFK expression, including Src, Fyn, and Lyn kinase. SFK inhibition by KF-1607 prevented the progression of tubular injury in UUO mice, as indicated by decreases in albuminuria, urinary KIM-1 excretion, and kidney NGAL protein expression. Renal tubulointerstitial fibrosis was attenuated in response to KF-1607, as shown by decreases in α-SMA, collagen I and IV protein expression, along with reduced Masson's trichrome and collagen-I staining in kidneys. KF-1607 also inhibited inflammation in the UUO kidney, as exhibited by reductions in F4/80 positive-staining and protein expression of p-NFκB and ICAM. Importantly, the observed effects of KF-1607 were similar to those of PP2. A new pan Src kinase inhibitor, KF-1607, is a potential pharmaceutical agent to prevent the progression of renal interstitial fibrosis.

Keywords

References

  1. Beyer, C. and Distler, J. H. W. (2013) Tyrosine kinase signaling in fibrotic disorders: translation of basic research to human disease. Biochim. Biophys. Acta 1832, 897-904. https://doi.org/10.1016/j.bbadis.2012.06.008
  2. Boggon, T. J. and Eck, M. J. (2004) Structure and regulation of Src family kinases. Oncogene 23, 7918-7927. https://doi.org/10.1038/sj.onc.1208081
  3. Breyer, M. D. and Susztak, K. (2016) The next generation of therapeutics for chronic kidney disease. Nat. Rev. Drug Discov. 15, 568-588. https://doi.org/10.1038/nrd.2016.67
  4. Choudhury, G. G., Mahimainathan, L., Das, F., Venkatesan, B. and Ghosh-Choudhury, N. (2006) c-Src couples PI 3 kinase/Akt and MAPK signaling to PDGF-induced DNA synthesis in mesangial cells. Cell. Signal. 18, 1854-1864. https://doi.org/10.1016/j.cellsig.2006.02.003
  5. De Nicola, L. and Zoccali, C. (2016) Chronic kidney disease prevalence in the general population: heterogeneity and concerns. Nephrol. Dial. Transplant. 31, 331-335. https://doi.org/10.1093/ndt/gfv427
  6. Drake, J. M., Lee, J. K. and Witte, O. N. (2014) Clinical targeting of mutated and wild-type protein tyrosine kinases in cancer. Mol. Cell. Biol. 34, 1722-1732. https://doi.org/10.1128/MCB.01592-13
  7. Flechner, S. M., Kurian, S. M., Head, S. R., Sharp, S. M., Whisenant, T. C., Zhang, J., Chismar, J. D., Horvath, S., Mondala, T., Gilmartin, T., Cook, D. J., Kay, S. A., Walker, J. R. and Salomon, D. R. (2004) Kidney transplant rejection and tissue injury by gene profiling of biopsies and peripheral blood lymphocytes. Am. J. Transplant. 4, 1475-1489. https://doi.org/10.1111/j.1600-6143.2004.00526.x
  8. Gainor, J. F. and Chabner, B. A. (2015) Ponatinib: accelerated disapproval. Oncologist 20, 847-848. https://doi.org/10.1634/theoncologist.2015-0253
  9. Ha, H., Yu, M. R. and Kim, K. H. (1999) Melatonin and taurine reduce early glomerulopathy in diabetic rats. Free Radic. Biol. Med. 26, 944-950. https://doi.org/10.1016/S0891-5849(98)00276-7
  10. Hattori, S., Kanda, S. and Harita, Y. (2011) Tyrosine kinase signaling in kidney glomerular podocytes. J. Signal Transduct. 2011, 317852. https://doi.org/10.1155/2011/317852
  11. Hill, N. R., Fatoba, S. T., Oke, J. L., Hirst, J. A., O'Callaghan, C. A., Lasserson, D. S. and Hobbs, F. D. (2016) Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS ONE 11, e0158765. https://doi.org/10.1371/journal.pone.0158765
  12. Hu, M., Che, P., Han, X., Cai, G. Q., Liu, G., Antony, V., Luckhardt, T., Siegal, G. P., Zhou, Y., Liu, R. M., Desai, L. P., O'Reilly, P. J., Thannickal, V. J. and Ding, Q. (2014) Therapeutic targeting of Src kinase in myofibroblast differentiation and pulmonary fibrosis. J. Pharmacol. Exp. Ther. 351, 87-95. https://doi.org/10.1124/jpet.114.216044
  13. Kilkenny, D. M., Rocheleau, J. V., Price, J., Reich, M. B. and Miller, G. G. (2003) c-Src regulation of fibroblast growth factor-induced proliferation in murine embryonic fibroblasts. J. Biol. Chem. 278, 17448-17454. https://doi.org/10.1074/jbc.M209698200
  14. Lee, J., Hwang, I., Lee, J. H., Lee, H. W., Jeong, L. S. and Ha, H. (2013) The selective A3AR antagonist LJ-1888 ameliorates UUOinduced tubulointerstitial fibrosis. Am. J. Pathol. 183, 1488-1497. https://doi.org/10.1016/j.ajpath.2013.07.010
  15. Liu, F., Wang, L., Qi, H., Wang, J., Wang, Y., Jiang, W., Xu, L., Liu, N. and Zhuang, S. (2017) Nintedanib, a triple tyrosine kinase inhibitor, attenuates renal fibrosis in chronic kidney disease. Clin. Sci. 131, 2125-2143. https://doi.org/10.1042/CS20170134
  16. Lv, Z., Hu, M., Ren, X., Fan, M., Zhen, J., Chen, L., Lin, J., Ding, N., Wang, Q. and Wang, R. (2016) Fyn mediates high glucose-induced actin cytoskeleton reorganization of podocytes via promoting ROCK activation in vitro. J. Diabetes Res. 2016, 5671803.
  17. Meng, X. M., Tang, P. M. K., Li, J. and Lan, H. Y. (2015) TGF-ß/Smad signaling in renal fibrosis. Front. Physiol. 6, 82. https://doi.org/10.3389/fphys.2015.00082
  18. Neusser, M. A., Lindenmeyer, M. T., Moll, A. G., Segerer, S., Edenhofer, I., Sen, K., Stiehl, D. P., Kretzler, M., Grone, H. J., Schlondorff, D. and Cohen, C. D. (2010) Human nephrosclerosis triggers a hypoxia-related glomerulopathy. Am. J. Pathol. 176, 594-607. https://doi.org/10.2353/ajpath.2010.090268
  19. O'Hare, T., Shakespeare, W. C., Zhu, X., Eide, C. A., Rivera, V. M., Wang, F., Adrian, L. T., Zhou, T., Huang, W. S., Xu, Q., Metcalf, C. A., 3rd, Tyner, J. W., Loriaux, M. M., Corbin, A. S., Wardwell, S., Ning, Y., Keats, J. A., Wang, Y., Sundaramoorthi, R., Thomas, M., Zhou, D., Snodgrass, J., Commodore, L., Sawyer, T. K., Dalgarno, D. C., Deininger, M. W., Druker, B. J. and Clackson, T. (2009) AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16, 401-412. https://doi.org/10.1016/j.ccr.2009.09.028
  20. Papadopoulos, T., Krochmal, M., Cisek, K., Fernandes, M., Husi, H., Stevens, R., Bascands, J. L., Schanstra, J. P. and Klein, J. (2016) Omics databases on kidney disease: where they can be found and how to benefit from them. Clin. Kidney J. 9, 343-352. https://doi.org/10.1093/ckj/sfv155
  21. Papatheodorou, I., Fonseca, N. A., Keays, M., Tang, Y. A., Barrera, E., Bazant, W., Burke, M., Füllgrabe, A., Fuentes, A. M., George, N., Huerta, L., Koskinen, S., Mohammed, S., Geniza, M., Preece, J., Jaiswal, P., Jarnuczak, A. F., Huber, W., Stegle, O., Vizcaino, J. A., Brazma, A. and Petryszak, R. (2018) Expression Atlas: gene and protein expression across multiple studies and organisms. Nucleic Acids Res. 46, D246-D251. https://doi.org/10.1093/nar/gkx1158
  22. Parsons, S. J. and Parsons, J. T. (2004) Src family kinases, key regulators of signal transduction. Oncogene 23, 7906-7909. https://doi.org/10.1038/sj.onc.1208160
  23. Ruggenenti, P., Cravedi, P. and Remuzzi, G. (2012) Mechanisms and treatment of CKD. J. Am. Soc. Nephrol. 23, 1917-1928. https://doi.org/10.1681/asn.2012040390
  24. Seo, H. Y., Jeon, J. H., Jung, Y. A., Jung, G. S., Lee, E. J., Choi, Y. K., Park, K. G., Choe, M. S., Jang, B. K., Kim, M. K. and Lee, I. K. (2016) Fyn deficiency attenuates renal fibrosis by inhibition of phospho-STAT3. Kidney Int. 90, 1285-1297. https://doi.org/10.1016/j.kint.2016.06.038
  25. Skhirtladze, C., Distler, O., Dees, C., Akhmetshina, A., Busch, N., Venalis, P., Zwerina, J., Spriewald, B., Pileckyte, M., Schett, G. and Distler, J. H. (2008) Src kinases in systemic sclerosis: central roles in fibroblast activation and in skin fibrosis. Arthritis Rheum. 58, 1475-1484. https://doi.org/10.1002/art.23436
  26. Sureshbabu, A., Muhsin, S. A. and Choi, M. E. (2016) TGF-β signaling in the kidney: profibrotic and protective effects. Am. J. Physiol. Renal Physiol. 310, F596-F606.
  27. Tang, P. M. K., Zhou, S., Li, C. J., Liao, J., Xiao, J., Wang, Q. M., Lian, G. Y., Li, J., Huang, X. R., To, K. F., Ng, C. F., Chong, C. C., Ma, R. C., Lee, T. L. and Lan, H. Y. (2018) The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring. Kidney Int. 93, 173-187. https://doi.org/10.1016/j.kint.2017.07.026
  28. Taniguchi, K., Xia, L., Goldberg, H. J., Lee, K. W. K., Shah, A., Stavar, L., Masson, E. A., Momen, A., Shikatani, E. A., John, R., Husain, M. and Fantus, I. G. (2013) Inhibition of src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice. Diabetes 62, 3874-3886. https://doi.org/10.2337/db12-1010
  29. Thomas, S. M. and Brugge, J. S. (1997) Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13, 513-609. https://doi.org/10.1146/annurev.cellbio.13.1.513
  30. Wei, C., Li, L., Menon, M. C., Zhang, W., Fu, J., Kidd, B., Keung, K. L., Woytovich, C., Greene, I., Xiao, W., Salem, F., Yi, Z., He, J. C., Dudley, J. T. and Murphy, B. (2016) Genomic analysis of kidney allograft injury identifies hematopoietic cell kinase as a key driver of renal fibrosis. J. Am. Soc. Nephrol. 28, 1385-1393. https://doi.org/10.1681/ASN.2016020238
  31. Wu, H., Shi, Y., Deng, X., Su, Y., Du, C., Wei, J., Ren, Y., Wu, M., Hou, Y. and Duan, H. (2015) Inhibition of c-Src/p38 MAPK pathway ameliorates renal tubular epithelial cells apoptosis in db/db mice. Mol. Cell. Endocrinol. 417, 27-35. https://doi.org/10.1016/j.mce.2015.09.008
  32. Wynn, T. A. and Ramalingam, T. R. (2012) Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med. 18, 1028-1040. https://doi.org/10.1038/nm.2807
  33. Xiong, C., Zang, X., Zhou, X., Liu, L., Masucci, M. V., Tang, J., Li, X., Liu, N., Bayliss, G., Zhao, T. C. and Zhuang, S. (2017) Pharmacological inhibition of Src kinase protects against acute kidney injury in a murine model of renal ischemia/reperfusion. Oncotarget 8, 31238-31253. https://doi.org/10.18632/oncotarget.16114
  34. Yan, Y., Ma, L., Zhou, X., Ponnusamy, M., Tang, J., Zhuang, M. A., Tolbert, E., Bayliss, G., Bai, J. and Zhuang, S. (2016) Src inhibition blocks renal interstitial fibroblast activation and ameliorates renal fibrosis. Kidney Int. 89, 68-81. https://doi.org/10.1038/ki.2015.293
  35. Zhou, D. and Liu, Y. (2016a) Renal fibrosis in 2015: understanding the mechanisms of kidney fibrosis. Nat. Rev. Nephrol. 12, 68-70. https://doi.org/10.1038/nrneph.2015.215
  36. Zhou, D. and Liu, Y. (2016b) Therapy for kidney fibrosis: is the Src kinase a potential target? Kidney Int. 89, 12-14. https://doi.org/10.1016/j.kint.2015.10.007

Cited by

  1. Inhibition of Src Family Kinases Ameliorates LPS-Induced Acute Kidney Injury and Mitochondrial Dysfunction in Mice vol.21, pp.21, 2021, https://doi.org/10.3390/ijms21218246
  2. Cilomilast Ameliorates Renal Tubulointerstitial Fibrosis by Inhibiting the TGF-β1-Smad2/3 Signaling Pathway vol.7, 2021, https://doi.org/10.3389/fmed.2020.626140