References
- Beyer, C. and Distler, J. H. W. (2013) Tyrosine kinase signaling in fibrotic disorders: translation of basic research to human disease. Biochim. Biophys. Acta 1832, 897-904. https://doi.org/10.1016/j.bbadis.2012.06.008
- Boggon, T. J. and Eck, M. J. (2004) Structure and regulation of Src family kinases. Oncogene 23, 7918-7927. https://doi.org/10.1038/sj.onc.1208081
- Breyer, M. D. and Susztak, K. (2016) The next generation of therapeutics for chronic kidney disease. Nat. Rev. Drug Discov. 15, 568-588. https://doi.org/10.1038/nrd.2016.67
- Choudhury, G. G., Mahimainathan, L., Das, F., Venkatesan, B. and Ghosh-Choudhury, N. (2006) c-Src couples PI 3 kinase/Akt and MAPK signaling to PDGF-induced DNA synthesis in mesangial cells. Cell. Signal. 18, 1854-1864. https://doi.org/10.1016/j.cellsig.2006.02.003
- De Nicola, L. and Zoccali, C. (2016) Chronic kidney disease prevalence in the general population: heterogeneity and concerns. Nephrol. Dial. Transplant. 31, 331-335. https://doi.org/10.1093/ndt/gfv427
- Drake, J. M., Lee, J. K. and Witte, O. N. (2014) Clinical targeting of mutated and wild-type protein tyrosine kinases in cancer. Mol. Cell. Biol. 34, 1722-1732. https://doi.org/10.1128/MCB.01592-13
- Flechner, S. M., Kurian, S. M., Head, S. R., Sharp, S. M., Whisenant, T. C., Zhang, J., Chismar, J. D., Horvath, S., Mondala, T., Gilmartin, T., Cook, D. J., Kay, S. A., Walker, J. R. and Salomon, D. R. (2004) Kidney transplant rejection and tissue injury by gene profiling of biopsies and peripheral blood lymphocytes. Am. J. Transplant. 4, 1475-1489. https://doi.org/10.1111/j.1600-6143.2004.00526.x
- Gainor, J. F. and Chabner, B. A. (2015) Ponatinib: accelerated disapproval. Oncologist 20, 847-848. https://doi.org/10.1634/theoncologist.2015-0253
- Ha, H., Yu, M. R. and Kim, K. H. (1999) Melatonin and taurine reduce early glomerulopathy in diabetic rats. Free Radic. Biol. Med. 26, 944-950. https://doi.org/10.1016/S0891-5849(98)00276-7
- Hattori, S., Kanda, S. and Harita, Y. (2011) Tyrosine kinase signaling in kidney glomerular podocytes. J. Signal Transduct. 2011, 317852. https://doi.org/10.1155/2011/317852
- Hill, N. R., Fatoba, S. T., Oke, J. L., Hirst, J. A., O'Callaghan, C. A., Lasserson, D. S. and Hobbs, F. D. (2016) Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS ONE 11, e0158765. https://doi.org/10.1371/journal.pone.0158765
- Hu, M., Che, P., Han, X., Cai, G. Q., Liu, G., Antony, V., Luckhardt, T., Siegal, G. P., Zhou, Y., Liu, R. M., Desai, L. P., O'Reilly, P. J., Thannickal, V. J. and Ding, Q. (2014) Therapeutic targeting of Src kinase in myofibroblast differentiation and pulmonary fibrosis. J. Pharmacol. Exp. Ther. 351, 87-95. https://doi.org/10.1124/jpet.114.216044
- Kilkenny, D. M., Rocheleau, J. V., Price, J., Reich, M. B. and Miller, G. G. (2003) c-Src regulation of fibroblast growth factor-induced proliferation in murine embryonic fibroblasts. J. Biol. Chem. 278, 17448-17454. https://doi.org/10.1074/jbc.M209698200
- Lee, J., Hwang, I., Lee, J. H., Lee, H. W., Jeong, L. S. and Ha, H. (2013) The selective A3AR antagonist LJ-1888 ameliorates UUOinduced tubulointerstitial fibrosis. Am. J. Pathol. 183, 1488-1497. https://doi.org/10.1016/j.ajpath.2013.07.010
- Liu, F., Wang, L., Qi, H., Wang, J., Wang, Y., Jiang, W., Xu, L., Liu, N. and Zhuang, S. (2017) Nintedanib, a triple tyrosine kinase inhibitor, attenuates renal fibrosis in chronic kidney disease. Clin. Sci. 131, 2125-2143. https://doi.org/10.1042/CS20170134
- Lv, Z., Hu, M., Ren, X., Fan, M., Zhen, J., Chen, L., Lin, J., Ding, N., Wang, Q. and Wang, R. (2016) Fyn mediates high glucose-induced actin cytoskeleton reorganization of podocytes via promoting ROCK activation in vitro. J. Diabetes Res. 2016, 5671803.
- Meng, X. M., Tang, P. M. K., Li, J. and Lan, H. Y. (2015) TGF-ß/Smad signaling in renal fibrosis. Front. Physiol. 6, 82. https://doi.org/10.3389/fphys.2015.00082
- Neusser, M. A., Lindenmeyer, M. T., Moll, A. G., Segerer, S., Edenhofer, I., Sen, K., Stiehl, D. P., Kretzler, M., Grone, H. J., Schlondorff, D. and Cohen, C. D. (2010) Human nephrosclerosis triggers a hypoxia-related glomerulopathy. Am. J. Pathol. 176, 594-607. https://doi.org/10.2353/ajpath.2010.090268
- O'Hare, T., Shakespeare, W. C., Zhu, X., Eide, C. A., Rivera, V. M., Wang, F., Adrian, L. T., Zhou, T., Huang, W. S., Xu, Q., Metcalf, C. A., 3rd, Tyner, J. W., Loriaux, M. M., Corbin, A. S., Wardwell, S., Ning, Y., Keats, J. A., Wang, Y., Sundaramoorthi, R., Thomas, M., Zhou, D., Snodgrass, J., Commodore, L., Sawyer, T. K., Dalgarno, D. C., Deininger, M. W., Druker, B. J. and Clackson, T. (2009) AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16, 401-412. https://doi.org/10.1016/j.ccr.2009.09.028
- Papadopoulos, T., Krochmal, M., Cisek, K., Fernandes, M., Husi, H., Stevens, R., Bascands, J. L., Schanstra, J. P. and Klein, J. (2016) Omics databases on kidney disease: where they can be found and how to benefit from them. Clin. Kidney J. 9, 343-352. https://doi.org/10.1093/ckj/sfv155
- Papatheodorou, I., Fonseca, N. A., Keays, M., Tang, Y. A., Barrera, E., Bazant, W., Burke, M., Füllgrabe, A., Fuentes, A. M., George, N., Huerta, L., Koskinen, S., Mohammed, S., Geniza, M., Preece, J., Jaiswal, P., Jarnuczak, A. F., Huber, W., Stegle, O., Vizcaino, J. A., Brazma, A. and Petryszak, R. (2018) Expression Atlas: gene and protein expression across multiple studies and organisms. Nucleic Acids Res. 46, D246-D251. https://doi.org/10.1093/nar/gkx1158
- Parsons, S. J. and Parsons, J. T. (2004) Src family kinases, key regulators of signal transduction. Oncogene 23, 7906-7909. https://doi.org/10.1038/sj.onc.1208160
- Ruggenenti, P., Cravedi, P. and Remuzzi, G. (2012) Mechanisms and treatment of CKD. J. Am. Soc. Nephrol. 23, 1917-1928. https://doi.org/10.1681/asn.2012040390
- Seo, H. Y., Jeon, J. H., Jung, Y. A., Jung, G. S., Lee, E. J., Choi, Y. K., Park, K. G., Choe, M. S., Jang, B. K., Kim, M. K. and Lee, I. K. (2016) Fyn deficiency attenuates renal fibrosis by inhibition of phospho-STAT3. Kidney Int. 90, 1285-1297. https://doi.org/10.1016/j.kint.2016.06.038
- Skhirtladze, C., Distler, O., Dees, C., Akhmetshina, A., Busch, N., Venalis, P., Zwerina, J., Spriewald, B., Pileckyte, M., Schett, G. and Distler, J. H. (2008) Src kinases in systemic sclerosis: central roles in fibroblast activation and in skin fibrosis. Arthritis Rheum. 58, 1475-1484. https://doi.org/10.1002/art.23436
- Sureshbabu, A., Muhsin, S. A. and Choi, M. E. (2016) TGF-β signaling in the kidney: profibrotic and protective effects. Am. J. Physiol. Renal Physiol. 310, F596-F606.
- Tang, P. M. K., Zhou, S., Li, C. J., Liao, J., Xiao, J., Wang, Q. M., Lian, G. Y., Li, J., Huang, X. R., To, K. F., Ng, C. F., Chong, C. C., Ma, R. C., Lee, T. L. and Lan, H. Y. (2018) The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring. Kidney Int. 93, 173-187. https://doi.org/10.1016/j.kint.2017.07.026
- Taniguchi, K., Xia, L., Goldberg, H. J., Lee, K. W. K., Shah, A., Stavar, L., Masson, E. A., Momen, A., Shikatani, E. A., John, R., Husain, M. and Fantus, I. G. (2013) Inhibition of src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice. Diabetes 62, 3874-3886. https://doi.org/10.2337/db12-1010
- Thomas, S. M. and Brugge, J. S. (1997) Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13, 513-609. https://doi.org/10.1146/annurev.cellbio.13.1.513
- Wei, C., Li, L., Menon, M. C., Zhang, W., Fu, J., Kidd, B., Keung, K. L., Woytovich, C., Greene, I., Xiao, W., Salem, F., Yi, Z., He, J. C., Dudley, J. T. and Murphy, B. (2016) Genomic analysis of kidney allograft injury identifies hematopoietic cell kinase as a key driver of renal fibrosis. J. Am. Soc. Nephrol. 28, 1385-1393. https://doi.org/10.1681/ASN.2016020238
- Wu, H., Shi, Y., Deng, X., Su, Y., Du, C., Wei, J., Ren, Y., Wu, M., Hou, Y. and Duan, H. (2015) Inhibition of c-Src/p38 MAPK pathway ameliorates renal tubular epithelial cells apoptosis in db/db mice. Mol. Cell. Endocrinol. 417, 27-35. https://doi.org/10.1016/j.mce.2015.09.008
- Wynn, T. A. and Ramalingam, T. R. (2012) Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med. 18, 1028-1040. https://doi.org/10.1038/nm.2807
- Xiong, C., Zang, X., Zhou, X., Liu, L., Masucci, M. V., Tang, J., Li, X., Liu, N., Bayliss, G., Zhao, T. C. and Zhuang, S. (2017) Pharmacological inhibition of Src kinase protects against acute kidney injury in a murine model of renal ischemia/reperfusion. Oncotarget 8, 31238-31253. https://doi.org/10.18632/oncotarget.16114
- Yan, Y., Ma, L., Zhou, X., Ponnusamy, M., Tang, J., Zhuang, M. A., Tolbert, E., Bayliss, G., Bai, J. and Zhuang, S. (2016) Src inhibition blocks renal interstitial fibroblast activation and ameliorates renal fibrosis. Kidney Int. 89, 68-81. https://doi.org/10.1038/ki.2015.293
- Zhou, D. and Liu, Y. (2016a) Renal fibrosis in 2015: understanding the mechanisms of kidney fibrosis. Nat. Rev. Nephrol. 12, 68-70. https://doi.org/10.1038/nrneph.2015.215
- Zhou, D. and Liu, Y. (2016b) Therapy for kidney fibrosis: is the Src kinase a potential target? Kidney Int. 89, 12-14. https://doi.org/10.1016/j.kint.2015.10.007
Cited by
- Inhibition of Src Family Kinases Ameliorates LPS-Induced Acute Kidney Injury and Mitochondrial Dysfunction in Mice vol.21, pp.21, 2021, https://doi.org/10.3390/ijms21218246
- Cilomilast Ameliorates Renal Tubulointerstitial Fibrosis by Inhibiting the TGF-β1-Smad2/3 Signaling Pathway vol.7, 2021, https://doi.org/10.3389/fmed.2020.626140