DOI QR코드

DOI QR Code

COVID-19 Vaccine: Critical Questions with Complicated Answers

  • Haidere, Mohammad Faisal (Department of Soil, Water and Environment, University of Dhaka) ;
  • Ratan, Zubair Ahmed (School of Health & Society, University of Wollongong) ;
  • Nowroz, Senjuti (Department of Chemistry, University of Dhaka) ;
  • Zaman, Sojib Bin (Department of Medicine, School of Clinical Sciences, Monash University) ;
  • Jung, You-Jung (Biological Resources Utilization Department, National Institute of Biological Resources) ;
  • Hosseinzadeh, Hassan (School of Health & Society, University of Wollongong) ;
  • Cho, Jae Youl (Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University)
  • Received : 2020.10.13
  • Accepted : 2020.12.02
  • Published : 2021.01.01

Abstract

COVID-19 has caused extensive human casualties with significant economic impacts around the globe, and has imposed new challenges on health systems worldwide. Over the past decade, SARS, Ebola, and Zika also led to significant concerns among the scientific community. Interestingly, the SARS and Zika epidemics ended before vaccine development; however, the scholarly community and the pharmaceutical companies responded very quickly at that time. Similarly, when the genetic sequence of SARS-CoV-2 was revealed, global vaccine companies and scientists have stepped forward to develop a vaccine, triggering a race toward vaccine development that the whole world is relying on. Similarly, an effective and safe vaccine could play a pivotal role in eradicating COVID-19. However, few important questions regarding SARS-CoV-2 vaccine development are explored in this review.

Keywords

References

  1. Adams, E. R., Ainsworth, M., Anand, R., Andersson, M. I., Auckland, K., Baillie, J. K., Barnes, E., Beer, S., Bell, J. I. and Berry, T. (2020) Antibody testing for COVID-19: a report from the national COVID scientific advisory panel. Wellcome Open Res. 5, 139. https://doi.org/10.12688/wellcomeopenres.15927.1
  2. Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. and Garry, R. F. (2020) The proximal origin of SARS-CoV-2. Nat. Med. 26, 450-452. https://doi.org/10.1038/s41591-020-0820-9
  3. Andrews, S. M. and Rowland-Jones, S. (2017) Recent advances in understanding HIV evolution. F1000Res 6, 597. https://doi.org/10.12688/f1000research.10876.1
  4. Ascherio, A., Zhang, S. M., Hernan, M. A., Olek, M. J., Coplan, P. M., Brodovicz, K. and Walker, A. M. (2001) Hepatitis B vaccination and the risk of multiple sclerosis. N. Engl. J. Med. 344, 327-332. https://doi.org/10.1056/nejm200102013440502
  5. Bernstein, K. E., Khan, Z., Giani, J. F., Cao, D. Y., Bernstein, E. A. and Shen, X. Z. (2018) Angiotensin-converting enzyme in innate and adaptive immunity. Nat. Rev. Nephrol. 14, 325-336. https://doi.org/10.1038/nrneph.2018.15
  6. Brisse, M., Vrba, S. M., Kirk, N., Liang, Y. and Ly, H. (2020) Emerging concepts and technologies in vaccine development. Front. Immunol. 11, 583077. https://doi.org/10.3389/fimmu.2020.583077
  7. Callow, K., Parry, H., Sergeant, M. and Tyrrell, D. (1990) The time course of the immune response to experimental coronavirus infection of man. Epidemiol. Infect. 105, 435-446. https://doi.org/10.1017/S0950268800048019
  8. Clem, A. S. (2011) Fundamentals of vaccine immunology. J. Glob. Infect. Dis. 3, 73-78. https://doi.org/10.4103/0974-777X.77299
  9. Corman, V. M., Muth, D., Niemeyer, D. and Drosten, C. (2018). Hosts and sources of endemic human coronaviruses. In Advances in Virus Research, Vol. 100, pp. 163-188. Elsevier.
  10. Cui, W., Fan, Y., Wu, W., Zhang, F., Wang, J. y. and Ni, A. p. (2003) Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clin. Infect. Dis. 37, 857-859. https://doi.org/10.1086/378587
  11. Du, Z., Zhu, F., Guo, F., Yang, B. and Wang, T. (2020) Detection of antibodies against SARS-CoV-2 in patients with COVID-19. J. Med. Virol. doi: 10.1002/jmv.25820 [Online ahead of print].
  12. Duffy, J., Weintraub, E., Vellozzi, C. and DeStefano, F. (2014) Narcolepsy and influenza A (H1N1) pandemic 2009 vaccination in the United States. Neurology 83, 1823-1830. https://doi.org/10.1212/WNL.0000000000000987
  13. Ewer, K., Sebastian, S., Spencer, A. J., Gilbert, S., Hill, A. V. and Lambe, T. (2017) Chimpanzee adenoviral vectors as vaccines for outbreak pathogens. Hum. Vaccin. Immunother. 13, 3020-3032. https://doi.org/10.1080/21645515.2017.1383575
  14. Folegatti, P. M., Ewer, K. J., Aley, P. K., Angus, B., Becker, S., BelijRammerstorfer, S., Bellamy, D., Bibi, S., Bittaye, M., Clutterbuck, E. A., Dold, C., Faust, S. N., Finn, A., Flaxman, A. L., Hallis, B., Heath, P., Jenkin, D., Lazarus, R., Makinson, R., Minassian, A. M., Pollock, K. M., Ramasamy, M., Robinson, H., Snape, M., Tarrant, R., Voysey, M., Green, C., Douglas, A. D., Hill, A. V. S., Lambe, T., Gilbert, S. C. and Pollard, A. J.; Oxford COVID Vaccine Trial Group (2020) Safety and immunogenicity of the ChAdOx1 nCoV19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 396, 467-478. https://doi.org/10.1016/S0140-6736(20)31604-4
  15. Gaebler, C. and Nussenzweig, M. C. (2020) All eyes on a hurdle race for a SARS-CoV-2 vaccine. Nature 586, 501-502. https://doi.org/10.1038/d41586-020-02926-w
  16. Gerdil, C. (2003) The annual production cycle for influenza vaccine. Vaccine 21, 1776-1779. https://doi.org/10.1016/S0264-410X(03)00071-9
  17. Gopinathan, U., Peacocke, E., Gouglas, D., Ottersen, T. and Rottingen, J. A. (2020) R&D for emerging infectious diseases of epidemic potential: sharing risks and benefits through a new coalition. In Infectious Diseases in the New Millennium, pp. 137-165. Springer.
  18. Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., Tan, K. S., Wang, D. Y. and Yan, Y. (2020) The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status. Mil. Med. Res. 7, 11. https://doi.org/10.1186/s40779-020-00240-0
  19. Hodgson, S. H., Mansatta, K., Mallett, G., Harris, V., Emary, K. R. and Pollard, A. J. (2020) What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30773-8 [Online ahead of print].
  20. Hotez, P. J., Corry, D. B. and Bottazzi, M. E. (2020) COVID-19 vaccine design: the Janus face of immune enhancement. Nat. Rev. Immunol. 20, 347-348. https://doi.org/10.1038/s41577-020-0323-4
  21. Houser, K. V., Broadbent, A. J., Gretebeck, L., Vogel, L., Lamirande, E. W., Sutton, T., Bock, K. W., Minai, M., Orandle, M., Moore, I. N. and Subbarao, K. (2017) Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody. PLoS Pathog. 13, e1006565. https://doi.org/10.1371/journal.ppat.1006565
  22. Huisman, W., Martina, B., Rimmelzwaan, G., Gruters, R. and Osterhaus, A. (2009) Vaccine-induced enhancement of viral infections. Vaccine 27, 505-512. https://doi.org/10.1016/j.vaccine.2008.10.087
  23. Institute of Medicine (US) Immunization Safety Review Committe (2002) Immunization Safety Review: SV40 Contamination of Polio Vaccine and Cancer (K. Stratton, D. A. Almario and M. C. McCormick Eds). National Academies Press (US), Washington DC.
  24. Iskander, J., Haber, P. and Murphy, T. (2004) Suspension of rotavirus vaccine after reports of intussusception-United States, 1999. MMWR Morb. Mortal. Wkly Rep. 53, 786-789.
  25. Jamilloux, Y., Henry, T., Belot, A., Viel, S., Fauter, M., El Jammal, T., Walzer, T., Francois, B. and Seve, P. (2020) Should we stimulate or suppress immune responses in COVID-19? Cytokine and anticytokine interventions. Autoimmun. Rev. 102567.
  26. Jouan, Y., Guillon, A., Gonzalez, L., Perez, Y., Ehrmann, S., Ferreira, M., Daix, T., Jeannet, R., Francois, B., Dequin, P. F., SiTahar, M., Baranek, T. and Paget, C. (2020) Functional alteration of innate T cells in critically ill Covid-19 patients. medRxiv doi: 10.1101/2020.05.03.20089300 [Online ahead of print].
  27. Kabbani, N. and Olds, J. L. (2020) Does COVID19 infect the brain? If so, smokers might be at a higher risk. Mol. Pharmacol. 97, 351-353. https://doi.org/10.1124/molpharm.120.000014
  28. Keshavarzi Arshadi, A., Webb, J., Salem, M., Cruz, E., Calad-Thomson, S., Ghadirian, N., Collins, J., Diez-Cecilia, E., Kelly, B., Goodarzi, H. and Yuan, J. S. (2020) Artificial intelligence for COVID-19 drug discovery and vaccine development. Front. Artif. Intell. 3, 65. https://doi.org/10.3389/frai.2020.00065
  29. Khailany, R. A., Safdar, M. and Ozaslan, M. (2020) Genomic characterization of a novel SARS-CoV-2. Gene Rep. 19, 100682. https://doi.org/10.1016/j.genrep.2020.100682
  30. Kim, D., Lee, J. Y., Yang, J. S., Kim, J. W., Kim, V. N. and Chang, H. (2020) The architecture of SARS-CoV-2 transcriptome. Cell 181, 914-921.e10. https://doi.org/10.1016/j.cell.2020.04.011
  31. Kim, H. W., Canchola, J. G., Brandt, C. D., Pyles, G., Chanock, R. M., Jensen, K. and Parrott, R. H. (1969) Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 89, 422-434. https://doi.org/10.1093/oxfordjournals.aje.a120955
  32. Kimmel, S. R. (2002) Vaccine adverse events: separating myth from reality. Am. Fam. Physician 66, 2113-2120.
  33. Korber, B., Fischer, W., Gnanakaran, S. G., Yoon, H., Theiler, J., Abfalterer, W., Foley, B., Giorgi, E. E., Bhattacharya, T., Parker, M. D., Partridge, D. G., Evans, C. M., Freeman, T. M., de Silva, T. I.; on behalf of the Sheffield COVID-19 Genomics Group, LaBranche, C. C. and Montefiori, D. C. (2020) Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv doi: 10.1016/j.cell.2020.06.043.
  34. Koyama, T., Weeraratne, D., Snowdon, J. L. and Parida, L. (2020) Emergence of drift variants that may affect COVID-19 vaccine development and antibody treatment. Pathogens 9, 324. https://doi.org/10.3390/pathogens9050324
  35. Le Houezec, D. (2014) Evolution of multiple sclerosis in France since the beginning of hepatitis B vaccination. Immunol. Res. 60, 219-225. https://doi.org/10.1007/s12026-014-8574-4
  36. Le, T. T., Cramer, J. P., Chen, R. and Mayhew, S. (2020) Evolution of the COVID-19 vaccine development landscape. Nat. Rev. Drug Discov. 19, 667-668. https://doi.org/10.1038/d41573-020-00151-8
  37. Liu, L., Wei, Q., Lin, Q., Fang, J., Wang, H., Kwok, H., Tang, H., Nishiura, K., Peng, J., Tan, Z., Wu, T., Cheung, K. W., Chan, K. H., Alvarez, X., Qin, C., Lackner, A., Perlman, S., Yuen, K. Y. and Chen, Z. (2019) Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 4, e123158. https://doi.org/10.1172/jci.insight.123158
  38. Long, Q. X., Liu, B. Z., Deng, H. J., Wu, G. C., Deng, K., Chen, Y. K., Liao, P., Qiu, J. F., Lin, Y., Cai, X. F., Wang, D. Q., Hu, Y., Ren, J. H., Tang, N., Xu, Y. Y., Yu, L. H., Mo, Z., Gong, F., Zhang, X. L., Tian, W. G., Hu, L., Zhang, X. X., Xiang, J. L., Du, H. X., Liu, H. W., Lang, C. H., Luo, X. H., Wu, S. B., Cui, X. P., Zhou, Z., Zhu, M. M., Wang, J., Xue, C. J., Li, X. F., Wang, L., Li, Z. J., Wang, K., Niu, C. C., Yang, Q. J., Tang, X. J., Zhang, Y., Liu, X. M., Li, J. J., Zhang, D. C., Zhang, F., Liu, P., Yuan, J., Li, Q., Hu, J. L., Chen, J. and Huang, A. L. (2020a) Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 26, 845-848. https://doi.org/10.1038/s41591-020-0897-1
  39. Long, Q. X., Tang, X. J., Shi, Q. L., Li, Q., Deng, H. J., Yuan, J., Hu, J. L., Xu, W., Zhang, Y., Lv, F. J., Su, K., Zhang, F., Gong, J., Wu, B., Liu, X. M., Li, J. J., Qiu, J. F., Chen, J. and Huang, A. L. (2020b) Clinical and immunological assessment of asymptomatic SARSCoV-2 infections. Nat. Med. 26, 1200-1204. https://doi.org/10.1038/s41591-020-0965-6
  40. Morris, S. J., Sebastian, S., Spencer, A. J. and Gilbert, S. C. (2016) Simian adenoviruses as vaccine vectors. Fut. Virol. 11, 649-659. https://doi.org/10.2217/fvl-2016-0070
  41. Moser, M. and Leo, O. (2010) Key concepts in immunology. Vaccine 28, C2-C13. https://doi.org/10.1016/j.vaccine.2010.07.022
  42. Mullard, A. (2020) COVID-19 vaccine development pipeline gears up. Lancet 395, 1751-1752. https://doi.org/10.1016/s0140-6736(20)31252-6
  43. Naismith, R. T. and Cross, A. H. (2004) Does the hepatitis B vaccine cause multiple sclerosis? Neurology 63, 772-773. https://doi.org/10.1212/01.WNL.0000137887.24504.30
  44. Offit, P. A. (2005) The Cutter incident, 50 years later. N. Engl. J. Med. 352, 1411-1412. https://doi.org/10.1056/NEJMp048180
  45. Partinen, M., Saarenpaa-Heikkila, O., Ilveskoski, I., Hublin, C., Linna, M., Olsen, P., Nokelainen, P., Alen, R., Wallden, T., Espo, M., Rusanen, H., Olme, J., Satila, H., Arikka, H., Kaipainen, P., Julkunen, I. and Kirjavainen, T. (2012) Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS ONE 7, e33723. https://doi.org/10.1371/journal.pone.0033723
  46. Peeri, N. C., Shrestha, N., Rahman, M. S., Zaki, R., Tan, Z., Bibi, S., Baghbanzadeh, M., Aghamohammadi, N., Zhang, W. and Haque, U. (2020) The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int. J. Epidemiol. 49, 717-726. https://doi.org/10.1093/ije/dyaa033
  47. Phan, T. (2020) Genetic diversity and evolution of SARS-CoV-2. Infect. Genet. Evol. 81, 104260. https://doi.org/10.1016/j.meegid.2020.104260
  48. Ratan, Z. A., Hosseinzadeh, H., Runa, N. J., Uddin, B. M. M., Haidere, M. F., Sarker, S. K. and Zaman, S. B. (2020) Novel Coronavirus: a new challenge for medical scientist? Bangladesh J. Infect. Dis. 7, S58-S60.
  49. Robbiani, D. F., Gaebler, C., Muecksch, F., Lorenzi, J. C. C., Wang, Z., Cho, A., Agudelo, M., Barnes, C. O., Gazumyan, A., Finkin, S., Hagglof, T., Oliveira, T. Y., Viant, C., Hurley, A., Hoffmann, H. H., Millard, K. G., Kost, R. G., Cipolla, M., Gordon, K., Bianchini, F., Chen, S. T., Ramos, V., Patel, R., Dizon, J., Shimeliovich, I., Mendoza, P., Hartweger, H., Nogueira, L., Pack, M., Horowitz, J., Schmidt, F., Weisblum, Y., Michailidis, E., Ashbrook, A. W., Waltari, E., Pak, J. E., Huey-Tubman, K. E., Koranda, N., Hoffman, P. R., West, A. P., Jr., Rice, C. M., Hatziioannou, T., Bjorkman, P. J., Bieniasz, P. D., Caskey, M. and Nussenzweig, M. C. (2020) Convergent antibody responses to SARS-CoV-2 infection in convalescent individuals. bioRxiv doi: 10.1101/2020.05.13.092619.
  50. Santos, R. A., Ferreira, A. J. and Simoes E Silva, A. C. (2008) Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis. Exp. Physiol. 93, 519-527. https://doi.org/10.1113/expphysiol.2008.042002
  51. Schonberger, L. B., Bregman, D. J., Sullivan-Bolyai, J. Z., Keenlyside, R. A., Ziegler, D. W., Retailliau, H. F., Eddins, D. L. and Bryan, J. A. (1979) Guillain-Barre syndrome following vaccination in the national influenza immunization program, United States, 1976-1977. Am. J. Epidemiol. 110, 105-123. https://doi.org/10.1093/oxfordjournals.aje.a112795
  52. Shereen, M. A., Khan, S., Kazmi, A., Bashir, N. and Siddique, R. (2020) COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 24, 91-98. https://doi.org/10.1016/j.jare.2020.03.005
  53. Tetro, J. A. (2020) Is COVID-19 receiving ADE from other coronaviruses? Microbes Inf. 22, 72-73. https://doi.org/10.1016/j.micinf.2020.02.006
  54. van Riel, D. and de Wit, E. (2020) Next-generation vaccine platforms for COVID-19. Nat. Mater. 19, 810-812. https://doi.org/10.1038/s41563-020-0746-0
  55. Vickers, C., Hales, P., Kaushik, V., Dick, L., Gavin, J., Tang, J., Godbout, K., Parsons, T., Baronas, E., Hsieh, F., Acton, S., Patane, M., Nichols, A. and Tummino, P. (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J. Biol. Chem. 277, 14838-14843. https://doi.org/10.1074/jbc.M200581200
  56. Weingartl, H., Czub, M., Czub, S., Neufeld, J., Marszal, P., Gren, J., Smith, G., Jones, S., Proulx, R, Deschambault, Y., Grudeski, E., Andonov, A., He, R., Li, Y., Copps, J., Grolla, A., Dick, D., Berry, J., Ganske, S., Manning, L. and Cao, J. (2004) Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J. Virol. 78, 12672-12676. https://doi.org/10.1128/JVI.78.22.12672-12676.2004
  57. Wilder-Smith, A. (2020) Dengue vaccine development: status and future. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 63, 40-44. https://doi.org/10.1007/s00103-019-03060-3
  58. World Health Organization (2020) Coronavirus disease (COVID-19) weekly epidemiological update and weekly operational update. In Coronavirus Disease (COVID-19) Situation Reports, Vol. 2020. World Health Organization: WHO.
  59. Xiao, A. T., Gao, C. and Zhang, S. (2020) Profile of specific antibodies to SARS-CoV-2: the first report. J. Infect. 81, 147-178. https://doi.org/10.1016/j.jinf.2020.03.012
  60. Yazdanpanah, F., Hamblin, M. R. and Rezaei, N. (2020) The immune system and COVID-19: friend or foe? Life Sci. 256, 117900. https://doi.org/10.1016/j.lfs.2020.117900
  61. Zepp, F. (2010) Principles of vaccine design-lessons from nature. Vaccine 28, C14-C24. https://doi.org/10.1016/j.vaccine.2010.07.020
  62. Zhang, C., Zhao, Y. X., Zhang, Y. H., Zhu, L., Deng, B. P., Zhou, Z. L., Li, S. Y., Lu, X. T., Song, L. L., Lei, X. M., Tang, W. B., Wang, N., Pan, C. M., Song, H. D., Liu, C. X., Dong, B., Zhang, Y. and Cao, Y. (2010) Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by targeting vascular cells. Proc. Natil. Acad. Sci. U.S.A. 107, 15886-15891. https://doi.org/10.1073/pnas.1001253107
  63. Zhou, Z., Ren, L., Zhang, L., Zhong, J., Xiao, Y., Jia, Z., Guo, L., Yang, J., Wang, C., Jiang, S., Yang, D., Zhang, G., Li, H., Chen, F., Xu, Y., Chen, M., Gao, Z., Yang, J., Dong, J., Liu, B., Zhang, X., Wang, W., He, K., Jin, Q., Li, M. and Wang, J. (2020) Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe 27, 883-890.e2. https://doi.org/10.1016/j.chom.2020.04.017
  64. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F. and Tan, W.; China Novel Coronavirus Investigating and Research Team (2020) A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727-733. https://doi.org/10.1056/nejmoa2001017

Cited by

  1. Survey data of COVID-19 vaccine side effects among hospital staff in a national referral hospital in Indonesia vol.36, 2021, https://doi.org/10.1016/j.dib.2021.107098
  2. Side Effects and Perceptions Following COVID-19 Vaccination in Jordan: A Randomized, Cross-Sectional Study Implementing Machine Learning for Predicting Severity of Side Effects vol.9, pp.6, 2021, https://doi.org/10.3390/vaccines9060556
  3. A comprehensive overview of vaccines developed for pandemic viral pathogens over the past two decades including those in clinical trials for the current novel SARS-CoV-2 vol.11, pp.33, 2021, https://doi.org/10.1039/d0ra09668g
  4. COVID‐19 vaccine hesitancy: A community‐based research in Turkey vol.75, pp.8, 2021, https://doi.org/10.1111/ijcp.14336
  5. Controversies and Challenges of Mass Vaccination against SARS-CoV-2 in Italy: Medico-Legal Perspectives and Considerations vol.9, pp.9, 2021, https://doi.org/10.3390/healthcare9091163
  6. Qualitative Assessment of Early Adverse Effects of Pfizer-BioNTech and Sinopharm COVID-19 Vaccines by Telephone Interviews vol.9, pp.9, 2021, https://doi.org/10.3390/vaccines9090950
  7. USING THE COVID-19 PANDEMIC AS A SOCIOSCIENTIFIC ISSUE TO SUPPORT THE SCIENTIFIC HABITS OF MIND vol.79, pp.5, 2021, https://doi.org/10.33225/pec/21.79.694
  8. Differences in Perceived Risk of Contracting SARS-CoV-2 during and after the Lockdown in Sub-Saharan African Countries vol.18, pp.21, 2021, https://doi.org/10.3390/ijerph182111091
  9. Peritoneal Administration of a Subunit Vaccine Encapsulated in a Nanodelivery System Not Only Augments Systemic Responses against SARS-CoV-2 but Also Stimulates Responses in the Respiratory Tract vol.13, pp.11, 2021, https://doi.org/10.3390/v13112202
  10. Crippling SARS-CoV-2 vaccine supply crunch, vaccination target and scope in Bangladesh vol.2, 2021, https://doi.org/10.1016/j.hpopen.2021.100054
  11. Transient visual field loss after COVID-19 vaccination: Experienced by ophthalmologist, case report vol.24, 2021, https://doi.org/10.1016/j.ajoc.2021.101212
  12. Humoral and cellular immune response to severe acute respiratory syndrome coronavirus‐2 vaccination in haemodialysis and kidney transplant patients vol.27, pp.1, 2022, https://doi.org/10.1111/nep.13974