Acknowledgement
This study was supported by the Anhui Educational Committee Foundation (KJ2020A0113).
References
- Yadav D K, Yadav N, Yadav S, Haque S, Tuteja N. 2016. An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Arch. Biochem. Biophys. 612: 57-77. https://doi.org/10.1016/j.abb.2016.10.012
- Cesaratto F, Burrone OR, Petris G. 2016. Tobacco Etch Virus protease: a shortcut across biotechnologies. J. Biotechnol. 231: 239-249. https://doi.org/10.1016/j.jbiotec.2016.06.012
- Cabrita LD, Gilis D, Robertson AL, Dehouck Y, Rooman M, Bottomley SP. 2007. Enhancing the stability and solubility of TEV protease using in silico design. Protein Sci. 16: 2360-2367. https://doi.org/10.1110/ps.072822507
- van den Berg S, Lofdahl PA, Hard T, Berglund H. 2006. Improved solubility of TEV protease by directed evolution. J. Biotechnol. 121: 291-298. https://doi.org/10.1016/j.jbiotec.2005.08.006
- Kapust RB, Tozser J, Fox JD, Anderson DE, Cherry S, Copeland TD, 2001. Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng. 14: 993-1000. https://doi.org/10.1093/protein/14.12.993
- Cesaratto F, Lopez-Requena A, Burrone OR, Petris G. 2015. Engineered tobacco etch virus (TEV) protease active in the secretory pathway of mammalian cells. J. Biotechnol. 212: 159-166. https://doi.org/10.1016/j.jbiotec.2015.08.026
- Phan J, Zdanov A, Evdokimov AG. Tropea JE, Peters HK. Kapust RB, et al. 2002. Structural basis for the substrate specificity of tobacco etch virus protease. J. Biol. Chem. 277: 50564-50572. https://doi.org/10.1074/jbc.M207224200
- Nunn CM, Jeeves M, Cliff MJ, Urquhart GT, George RR, Chao LH, et al. 2005. Crystal structure of tobacco etch virus protease shows the protein C terminus bound within the active site. J. Mol. Biol. 350: 145-155. https://doi.org/10.1016/j.jmb.2005.04.013
- Baeshen MN, Al-Hejin AM, Bora RS, Ahmed MM, Ramadan HA, Saini KS, et al. 2015. Production of biopharmaceuticals in E. coli: current scenario and future perspectives. J. Microbiol. Biotechnol. 25: 953-962. https://doi.org/10.4014/jmb.1412.12079
- Studier FW. 1991. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J. Mol. Biol. 219: 37-44. https://doi.org/10.1016/0022-2836(91)90855-z
- Salinas G, Pellizza L, Margenat M, Flo M, Fernandez C. 2011. Tuned Escherichia coli as a host for the expression of disulfide-rich proteins. Biotechnol. J. 6: 686-699. https://doi.org/10.1002/biot.201000335
- Fang J, Chen L, Cheng B, Fan J. 2013. Engineering soluble tobacco etch virus protease accompanies the loss of stability. Protein Expr. Purif. 92: 29-35. https://doi.org/10.1016/j.pep.2013.08.015
- Zhou C, Yan Y, Fang J, Cheng B, Fan, J. 2014. A new fusion protein platform for quantitatively measuring activity of multiple proteases. Microb. Cell Fact. 13: 44. https://doi.org/10.1186/1475-2859-13-44
- Hwang PM, Pan JS, Sykes BD. 2014. Targeted expression, purification, and cleavage of fusion proteins from inclusion bodies in Escherichia coli. FEBS Lett. 588: 247-252. https://doi.org/10.1016/j.febslet.2013.09.028
- Jungbauer A, Kaar W, Schlegl R. 2004. Folding and refolding of proteins in chromatographic beds. Curr. Opin. Biotechnol. 15: 487-494. https://doi.org/10.1016/j.copbio.2004.08.009
- Berdichevsky Y, Lamed R, Frenkel D, Gophna U, Bayer EA, Yaron S, et al. 1999. Matrix-assisted refolding of single-chain Fv-cellulose binding domain fusion proteins. Protein Expr. Purif. 17: 249-259. https://doi.org/10.1006/prep.1999.1125
- Hong J, Wang Y, Ye X, Zhang YH. 2008. Simple protein purification through affinity adsorption on regenerated amorphous cellulose followed by intein self-cleavage. J. Chromatogr. A, 1194:150-154. https://doi.org/10.1016/j.chroma.2008.04.048
- Wingfield PT, Palmer I, Liang SM. 2014. Folding and purification of insoluble (inclusion body) proteins from Escherichia coli. Curr. Protoc. Protein Sci. 78: 6.5.1-6.5.30.
- Asial I, Cheng YX, Engman H, Dollhopf M, Wu B, Nordlund P, et al. 2013. Engineering protein thermostability using a generic activity-independent biophysical screen inside the cell. Nat. Commun. 4: 2901. https://doi.org/10.1038/ncomms3901
- Sanchez MI, Ting AY. 2020. Directed evolution improves the catalytic efficiency of TEV protease. Nat. Methods 17:167-174. https://doi.org/10.1038/s41592-019-0665-7
- Denard CA, Paresi C, Yaghi R, McGinnis N, Bennett Z, Yi L, et al. 2021. YESS 2.0, a tunable platform for enzyme evolution, yields highly active TEV protease variants. ACS Synth. Biol. 10: 63-71. https://doi.org/10.1021/acssynbio.0c00452
- Tan H, Wang J, Zhao ZK. 2007. Purification and refolding optimization of recombinant bovine enterokinase light chain overexpressed in Escherichia coli. Protein Expr. Purif. 56: 40-47. https://doi.org/10.1016/j.pep.2007.07.006
- Yu X, Sun J, Wang W, Jiang L, Wang R, Xiao W, et al. 2017. Tobacco etch virus protease mediating cleavage of the cellulose-binding module tagged colored proteins immobilized on the regenerated amorphous cellulose. Bioprocess Biosyst. Eng. 40: 1101-1110. https://doi.org/10.1007/s00449-017-1772-4
- Levy I, Ward G, Hadar Y, Shoseyov O, Dosoretz CG. 2003. Oxidation of 4-bromophenol by the recombinant fused protein cellulose-binding domain-horseradish peroxidase immobilized on cellulose. Biotechnol. Bioeng. 82: 223-231. https://doi.org/10.1002/bit.10562
- Skala W, Goettig P, Brandstetter H. 2013. Do-it-yourself histidine-tagged bovine enterokinase: a handy member of the protein engineer's toolbox. J. Biotechnol. 168: 421-425. https://doi.org/10.1016/j.jbiotec.2013.10.022
- Tao YM, Wang S, Luo HL, Yan WW. 2018. Peroxidase from jackfruit: Purification, characterization and thermal inactivation. Int. J. Biol. Macromol. 114: 898-905. https://doi.org/10.1016/j.ijbiomac.2018.04.007
- Fang J, Zou L, Zhou X, Cheng B, Fan J. 2014. Synonymous rare arginine codons and tRNA abundance affect protein production and quality of TEV protease variant. PLoS One 9: e112254. https://doi.org/10.1371/journal.pone.0112254
- Gupta RD. Tawfik DS. 2008. Directed enzyme evolution via small and effective neutral drift libraries. Nat. Methods 5: 939-942. https://doi.org/10.1038/nmeth.1262
- Yurkova MS, Sharapova OA, Zenin VA, Fedorov AN. 2019. Versatile format of minichaperone-based protein fusion system. Sci. Rep. 9: 15063. https://doi.org/10.1038/s41598-019-51015-0
- Kapust RB, Waugh DS. 2000. Controlled intracellular processing of fusion proteins by TEV protease. Protein Expr. Purif. 19: 312-318. https://doi.org/10.1006/prep.2000.1251
- Zhang W, Zheng W, Mao M, Yang Y. 2014. Highly efficient folding of multi-disulfide proteins in superoxidizing Escherichia coli cytoplasm. Biotechnol. Bioeng. 111: 2520-2527. https://doi.org/10.1002/bit.25309
- Davies MJ. 2005. The oxidative environment and protein damage. Biochim. Biophys. Acta 1703: 93-109. https://doi.org/10.1016/j.bbapap.2004.08.007
- Shafee T, Gatti-Lafranconi P, Minter R, Hollfelder F. 2015. Handicap-recover evolution leads to a chemically versatile, nucleophile-permissive protease. Chembiochem. 16: 1866-1869. https://doi.org/10.1002/cbic.201500295
- Chang Z, Lu M, Ma Y, Kwag DG, Kim SH, Park JM, et al. 2015. Production of disulfide bond-rich peptides by fusion expression using small transmembrane proteins of Escherichia coli. Amino Acids 47: 579-587. https://doi.org/10.1007/s00726-014-1892-y
- Nam H, Hwang BJ, Choi DY, Shin S, Choi M. 2020. Tobacco etch virus (TEV) protease with multiple mutations to improve solubility and reduce self-cleavage exhibits enhanced enzymatic activity. FEBS Open Bio 10: 619-626. https://doi.org/10.1002/2211-5463.12828