DOI QR코드

DOI QR Code

An Efficient Markerless Deletion System Suitable for the Industrial Strains of Streptomyces

  • Dong, Jianxin (Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine) ;
  • Wei, Jiaxiu (Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine) ;
  • Li, Han (Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine) ;
  • Zhao, Shiyao (Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine) ;
  • Guan, Wenjun (Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine)
  • Received : 2021.06.30
  • Accepted : 2021.09.02
  • Published : 2021.12.28

Abstract

The genus Streptomyces is intensively studied due to its excellent ability to produce secondary metabolites with diverse bioactivities. In particular, adequate precursors of secondary metabolites as well as sophisticated post modification systems make some high-yield industrial strains of Streptomyces the promising chassis for the heterologous production of natural products. However, lack of efficient genetic tools for the manipulation of industrial strains, especially the episomal vector independent tools suitable for large DNA fragment deletion, makes it difficult to remold the metabolic pathways and streamline the genomes in these strains. In this respect, we developed an efficient deletion system independent of the episomal vector for large DNA fragment deletion. Based on this system, four large segments of DNA, ranging in length from 10 kb to 200 kb, were knocked out successfully from three industrial Streptomyces strains without any marker left. Notably, compared to the classical deletion system used in Streptomyces, this deletion system takes about 25% less time in our cases. This work provides a very effective tool for further genetic engineering of the industrial Streptomyces.

Keywords

Acknowledgement

This work was financially supported by National Key R&D Program of China (2019YFA0905400).

References

  1. Berdy J. 2005. Bioactive Microbial Metabolites. J. Antibiot. 58: 1-26. https://doi.org/10.1038/ja.2005.1
  2. Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H. 2010. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc. Natl. Acad. Sci. USA 107: 2646-2651. https://doi.org/10.1073/pnas.0914833107
  3. Liu R, Deng Z, Liu T. 2018. Streptomyces species: Ideal chassis for natural product discovery and overproduction. Metab. Eng. 50: 74-84. https://doi.org/10.1016/j.ymben.2018.05.015
  4. Musiol-Kroll EM, Tocchetti A, Sosio M, Stegmann EJNpr. 2019. Challenges and advances in genetic manipulation of filamentous actinomycetes-the remarkable producers of specialized metabolites. Nat. Prod. Rep. 36: 1351-1369. https://doi.org/10.1039/c9np00029a
  5. Hopwood DA. 1999. Genetic recombination and strain improvement (Vol. 18). J. Ind. Microbiol. Biotechnol. 22: 323-335. https://doi.org/10.1038/sj/jim/2900646
  6. Tong Y, Charusanti P, Zhang L, Weber T, Lee SY. 2015. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 4: 1020-1029. https://doi.org/10.1021/acssynbio.5b00038
  7. Zeng H, Wen S, Xu W, He Z, Zhai G, Liu Y, et al. 2015. Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomycescoelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl. Microbiol. Biotechnol. 99: 10575-10585. https://doi.org/10.1007/s00253-015-6931-4
  8. Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E, et al. 2017. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol. 13: 607-609. https://doi.org/10.1038/nchembio.2341
  9. Bu Q-T, Yu P, Wang J, Li Z-Y, Chen X-A, Mao X-M, et al. 2019. Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches. Microb. Cell Fact. 18: 16. https://doi.org/10.1186/s12934-019-1055-7
  10. Rezuchova B, Homerova D, Sevcikova B, Nunez LE, Novakova R, Feckova L, et al. 2018. An efficient blue-white screening system for markerless deletions and stable integrations in Streptomyces chromosomes based on the blue pigment indigoidine biosynthetic gene bpsA. Appl. Microbiol. Biotechnol. 102: 10231-10244. https://doi.org/10.1007/s00253-018-9393-7
  11. Li P, Li J, Guo Z, Tang W, Han J, Meng X, et al. 2015. An efficient blue-white screening based gene inactivation system for Streptomyces. Appl. Microbiol. Biotechnol. 99: 1923-1933. https://doi.org/10.1007/s00253-014-6369-0
  12. Wang Q, Xie F, Tong Y, Habisch R, Yang B, Zhang L, et al. 2020. Dual-function chromogenic screening-based CRISPR/Cas9 genome editing system for actinomycetes. Appl. Microbiol. Biotechnol. 104: 225-239. https://doi.org/10.1007/s00253-019-10223-4
  13. Olano C, Garcia I, Gonzalez A, Rodriguez M, Rozas D, Rubio J, et al. 2014. Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. Microb. Biotechnol. 7: 242-256. https://doi.org/10.1111/1751-7915.12116
  14. Shan Y, Guo D, Gu Q, Li Y, Li Y, Chen Y, et al. 2020. Genome mining and homologous comparison strategy for digging exporters contributing self-resistance in natamycin-producing Streptomyces strains. Appl. Microbiol. Biotechnol. 104: 817-831. https://doi.org/10.1007/s00253-019-10131-7
  15. Zhu Z, Li H, Yu P, Guo Y, Luo S, Chen Z, et al. 2017. SlnR is a positive pathway-specific regulator for salinomycin biosynthesis in Streptomyces albus. Appl. Microbiol. Biotechnol. 101: 1547-1557. https://doi.org/10.1007/s00253-016-7918-5
  16. Sezonov G, Joseleau-Petit D, D'Ari R. 2007. Escherichia coli physiology in Luria-Bertani broth. J. Bacteriol. 189: 8746-8749. https://doi.org/10.1128/JB.01368-07
  17. Miyake K, Horinouchi S, Yoshida M, Chiba N, Mori K, Nogawa N, et al. 1989. Detection and properties of A-factor-binding protein from Streptomyces griseus. J. Bacteriol. 171: 4298-4302. https://doi.org/10.1128/jb.171.8.4298-4302.1989
  18. Li H, Wei J, Dong J, Li Y, Li Y, Chen Y, et al. 2020. Enhanced triacylglycerol metabolism contributes to efficient oil utilization and high-level production of salinomycin in Streptomyces albus ZD11. J. Appl. Environ. Microbiol. 86: e00763-20.
  19. Wang W, Li X, Wang J, Xiang S, Feng X, Yang K. 2013. An engineered strong promoter for streptomycetes. Appl. Environ. Microbiol. 79: 4484-4492. https://doi.org/10.1128/AEM.00985-13
  20. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5: R12. https://doi.org/10.1186/gb-2004-5-2-r12
  21. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, et al. 2017. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45: W36-W41. https://doi.org/10.1093/nar/gkx319
  22. Bertelli C, Laird MR, Williams KP, Group SFURC, Lau BY, Hoad G, et al. 2017. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 45: W30-W35. https://doi.org/10.1093/nar/gkx343
  23. Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M. 2011. Issaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol. 12: R30. https://doi.org/10.1186/gb-2011-12-3-r30
  24. Knirschova R, Novakova R, Mingyar E, Bekeova C, Homerova D, Kormanec J. 2015. Utilization of a reporter system based on the blue pigment indigoidine biosynthetic gene bpsA for detection of promoter activity and deletion of genes in Streptomyces. J. Microbiol. Methods 113: 1-3. https://doi.org/10.1016/j.mimet.2015.03.017
  25. Wang Q, Xie F, Tong Y, Habisch R, Yang B, Zhang L, et al. 2019. Dual-function chromogenic screening-based CRISPR/Cas9 genome editing system for actinomycetes. Appl. Microbiol. Biotechnol. 104: 225-239 https://doi.org/10.1007/s00253-019-10223-4
  26. Ostash B, Makitrinskyy R, Walker S, Fedorenko V. 2009. Identification and characterization of Streptomyces ghanaensis ATCC14672 integration sites for three actinophage-based plasmids. Plasmid 61: 171-175. https://doi.org/10.1016/j.plasmid.2008.12.002
  27. Luzhetskii AN, Ostash BE, Fedorenko VA. 2001. Intergeneric conjugation Escherichia coli-Streptomyces globisporus 1912 using integrative plasmid pSET152 and its derivatives. Genetika 37: 1340-1347.
  28. Guo Y-Y, Li H, Zhou Z-X, Mao X-M, Tang Y, Chen X, et al. 2016. Identification and biosynthetic characterization of natural aromatic azoxy products from Streptomyces chattanoogensis L10. Org. Lett. 17: 6114-6117. https://doi.org/10.1021/acs.orglett.5b03137
  29. Chu BC, Garcia-Herrero A, Johanson TH, Krewulak KD, Lau CK, Peacock RS, et al. 2010. Siderophore uptake in bacteria and the battle for iron with the host; a bird's eye view. BioMetals 23: 601-611. https://doi.org/10.1007/s10534-010-9361-x
  30. Gust B, Challis GL, Fowler K, Kieser T, Chater KF. 2003. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100: 1541-1546. https://doi.org/10.1073/pnas.0337542100
  31. Van Mellaert L, Mei L, Lammertyn E, Schacht S, Anne J. 1998. Site-specific integration of bacteriophage VWB genome into Streptomyces venezuelae and construction of a VWB-based integrative vector. Microbiology 144: 3351-3358. https://doi.org/10.1099/00221287-144-12-3351