Acknowledgement
The present study was supported by the research fund (19162MFDS037) from the Ministry of Food and Drug Safety, Republic of Korea.
References
- Oliver SP, Jayarao BM, Almeida RA. 2005. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog. Dis. 2: 115-129. https://doi.org/10.1089/fpd.2005.2.115
- Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C. 2010. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol. Adv. 28: 232-254. https://doi.org/10.1016/j.biotechadv.2009.12.004
- R.Beuchat L. 1999. Listeria monocytogenes: incidence on vegetables Food Control 7: 6.
- Heiman KE, Garalde VB, Gronostaj M, Jackson KA, Beam S, Joseph L, et al. 2016. Multistate outbreak of listeriosis caused by imported cheese and evidence of cross-contamination of other cheeses, USA, 2012. Epidemiol. Infect. 144: 2698-2708. https://doi.org/10.1017/S095026881500117X
- Fawcett AMSL. 2002. Tracking and traceability in the meat processing industry: a solution. Br. Food J. 104: 13.
- Zhao X, Lin CW, Wang J, Oh DH. 2014. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 24: 297-312. https://doi.org/10.4014/jmb.1310.10013
- Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488: 86-90. https://doi.org/10.1038/nature11237
- Janda JM, Abbott SL. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45: 2761-2764. https://doi.org/10.1128/JCM.01228-07
- Kim M, Lee KH, Yoon SW, Kim BS, Chun J, Yi H. 2013. Analytical tools and databases for metagenomics in the next-generation sequencing era. Genomics Inform. 11: 102-113. https://doi.org/10.5808/GI.2013.11.3.102
- Ku HJ, Lee JH. 2014. Development of a novel long-range 16S rRNA universal primer set for metagenomic analysis of gastrointestinal microbiota in newborn infants. J. Microbiol. Biotechnol. 24: 812-822. https://doi.org/10.4014/jmb.1403.03032
- Hanshew AS, Mason CJ, Raffa KF, Currie CR. 2013. Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. J.Microbiol. Methods 95: 149-155. https://doi.org/10.1016/j.mimet.2013.08.007
- Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
- Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
- Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, et al. 2005. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33: D294-296. https://doi.org/10.1093/nar/gki038
- Jose A Navas-Molina JMP-S, Antonio Gonzalez, Paul J McMurdie, Yoshiki Vazquez-Baeza, Zhenjiang Xu, Luke K Ursell, et al. 2013. Advancing our understanding of the human microbiome using QIIME. Methods Enzymol. 531: 371. https://doi.org/10.1016/B978-0-12-407863-5.00019-8
- Parks DH, Beiko RG. 2010. Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26: 715-721. https://doi.org/10.1093/bioinformatics/btq041
- Doyle MP, Erickson MC. 2006. Reducing the carriage of foodborne pathogens in livestock and poultry. Poult. Sci. 85: 960-973. https://doi.org/10.1093/ps/85.6.960
- Burnett SL, Beuchat LR. 2001. Human pathogens associated with raw produce and unpasteurized juices, and difficulties in decontamination. J. Ind. Microbiol. Biotechnol. 27: 104-110. https://doi.org/10.1038/sj/jim/7000199
- Rahn K, De Grandis SA, Clarke RC, McEwen SA, Galan JE, Ginocchio C, et al. 1992. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes 6: 271-279. https://doi.org/10.1016/0890-8508(92)90002-f
- Miller RR, Montoya V, Gardy JL, Patrick DM, Tang P. 2013. Metagenomics for pathogen detection in public health. Genome Med. 5: 81. https://doi.org/10.1186/gm485
- Friedman CR, Neimann J, Wegener HC, Tauxe RV. 2000.
- Anonymous. 2004. Annual Report on Zoonoses in Denmark 2003.
- Anonymous. 2000. Annual report on zoonoses in Denmark 1999.
- Anonymous. 2002. Annual report on zoonoses in Denmark 2001.
- Weber A, Lembke C, Schafer R. 1985. [Isolation of Campylobacter jejuni and Campylobacter coli in fecal samples of healthy slaughter swine depending on the season]. Zentralbl. Veterinarmed. B. 32: 40-45. https://doi.org/10.1111/j.1439-0450.1985.tb01935.x
- Finlay RC, Mann ED, Horning JL. 1986. Prevalence of Salmonella and Campylobacter contamination in manitoba Swine carcasses. Can. Vet. J. 27: 185-187.
- Lammerding AM, Garcia MM, Mann ED, Robinson Y, Dorward WJ, Ruscott RB, et al. 1988. Prevalence of Salmonella and thermophilic Campylobacter in fresh pork, beef, veal and poultry in Canada. J. Food Prot. 51: 47-52. https://doi.org/10.4315/0362-028x-51.1.47
- Moore JE, Madden RH. 1998. Occurrence of thermophilic Campylobacter spp. in porcine liver in Northern Ireland. J. Food Prot. 61: 409-413. https://doi.org/10.4315/0362-028X-61.4.409
- Harvey RB, Young CR, Ziprin RL, Hume ME, Genovese KJ, Anderson RC, et al. 1999. Prevalence of Campylobacter spp. isolated from the intestinal tract of pigs raised in an integrated swine production system. J. Am. Vet. Med. Assoc. 215: 1601-1604.
- Brynestad S, Granum PE. 2002. Clostridium perfringens and foodborne infections. Int. J. Food Microbiol. 74: 195-202. https://doi.org/10.1016/S0168-1605(01)00680-8
- Suh J PO, Kang Y, Ahn JE, Jung JS, An YS, Park SH, et al. 2013. Risk assessment on nitrate and nitrite in vegetables available in Korean diet. J. Appl. Biol. Chem. 56: 205-211. https://doi.org/10.3839/jabc.2013.033
- Mafart P, Couvert O, Gaillard S, Leguerinel I. 2002. On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. Int. J. Food Microbiol. 72: 107-113. https://doi.org/10.1016/S0168-1605(01)00624-9
- Anonymous. 2018. Foodborne disease outbreak.
- Hu WS, Kim H, Koo OK. 2018. Molecular genotyping, biofilm formation and antibiotic resistance of enterotoxigenic Clostridium perfringens isolated from meat supplied to school cafeterias in South Korea. Anaerobe 52: 115-121. https://doi.org/10.1016/j.anaerobe.2018.06.011
- Jeong D, Kim DH, Kang IB, Chon JW, Kim H, Om AS, et al. 2017. Prevalence and toxin type of Clostridium perfringens in beef from four different types of meat markets in Seoul, Korea. Food Sci. Biotechnol. 26: 545-548. https://doi.org/10.1007/s10068-017-0075-5
- Van Immerseel F, De Buck J, Pasmans F, Huyghebaert G, Haesebrouck F, Ducatelle R. 2004. Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathol. 33: 537-549. https://doi.org/10.1080/03079450400013162
- Asghar Arshi SN, Hamidreza Kabiri, Arman Akbarpour, Rassoul Hashemzehi, Behnaz Mansouri, Ayse Kilic, et al. 2017. Incidence of Clostridium perfringens in intestinal contents of domestic livestock detected by PCR. Int. J. Anim. Res. 1: 1-6.
- Balaban N, Rasooly A. 2000. Staphylococcal enterotoxins. Int. J. Food Microbiol. 61: 1-10. https://doi.org/10.1016/S0168-1605(00)00377-9
- Le Loir Y, Baron F, Gautier M. 2003. Staphylococcus aureus and food poisoning. Genet. Mol. Res. GMR 2: 63-76.
- Hennekinne JA, De Buyser ML, Dragacci S. 2012. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol. Rev. 36: 815-836. https://doi.org/10.1111/j.1574-6976.2011.00311.x
- Lowy FD. 2003. Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Invest. 111: 1265-1273. https://doi.org/10.1172/JCI18535
- Fraser JD, Proft T. 2008. The bacterial superantigen and superantigen-like proteins. Immunol. Revi. 225: 226-243. https://doi.org/10.1111/j.1600-065X.2008.00681.x
- Spaulding AR, Salgado-Pabon W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. 2013. Staphylococcal and streptococcal superantigen exotoxins. Clin. Microbiol. Rev. 26: 422-447. https://doi.org/10.1128/CMR.00104-12
- Baele M, Decostere A, Vandamme P, Ceelen L, Hellemans A, Mast J, et al. 2008. Isolation and characterization of Helicobactersuis sp. nov. from pig stomachs. Int. J. Syst. Evol. Microbiol. 58: 1350-1358. https://doi.org/10.1099/ijs.0.65133-0
- Haesebrouck F, Pasmans F, Flahou B, Smet A, Vandamme P, Ducatelle R. 2011. Non-Helicobacter pylori Helicobacter species in the human gastric mucosa: a proposal to introduce the terms H. heilmannii sensu lato and sensu stricto. Helicobacter 16: 339-340. https://doi.org/10.1111/j.1523-5378.2011.00849.x
- Cantet F, Magras C, Marais A, Federighi M, Megraud F. 1999. Helicobacter species colonizing pig stomach: molecular characterization and determination of prevalence. Appl. Environ. Microbiol. 65: 4672-4676. https://doi.org/10.1128/aem.65.10.4672-4676.1999
- Lowy FD. 1998. Staphylococcus aureus infections. New Eng. J. Med. 339: 520-532. https://doi.org/10.1056/NEJM199808203390806
- Freney J, Hansen W, Etienne J, Vandenesch F, Fleurette J. 1988. Postoperative infant septicemia caused by Pseudomonas luteola (CDC group Ve-1) and Pseudomonas oryzihabitans (CDC group Ve-2). J. Clin. Microbiol. 26: 1241-1243. https://doi.org/10.1128/jcm.26.6.1241-1243.1988
- Arnold DL, Preston GM. 2019. Pseudomonas syringae: enterprising epiphyte and stealthy parasite. Microbiology 165: 251-253. https://doi.org/10.1099/mic.0.000715
- Diggle SP, Whiteley M. 2020. Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology 166: 30-33. https://doi.org/10.1099/mic.0.000860
- Van Delden C, Iglewski BH. 1998. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 4: 551-560. https://doi.org/10.3201/eid0404.980405
- Ryan KJ, Ray CG, Sherris JC. 2004. Sherris medical microbiology: an introduction to infectious diseases, pp. 997. 4th Ed. McGraw-Hill, New York, USA