DOI QR코드

DOI QR Code

Applicability Evaluation of Male-Specific Coliphage-Based Detection Methods for Microbial Contamination Tracking

  • Kim, Gyungcheon (Department of Food Science and Biotechnology, College of Life Science, Sejong University) ;
  • Park, Gwoncheol (Department of Food Science and Biotechnology, College of Life Science, Sejong University) ;
  • Kang, Seohyun (Department of Food Science and Biotechnology, College of Life Science, Sejong University) ;
  • Lee, Sanghee (Department of Food Science and Biotechnology, College of Life Science, Sejong University) ;
  • Park, Jiyoung (Department of Food Science and Biotechnology, College of Life Science, Sejong University) ;
  • Ha, Jina (Department of Food Science and Biotechnology, College of Life Science, Sejong University) ;
  • Park, Kunbawui (Food Safety and Processing Research Division, National Institute of Fisheries Science) ;
  • Kang, Minseok (Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University) ;
  • Cho, Min (Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University) ;
  • Shin, Hakdong (Department of Food Science and Biotechnology, College of Life Science, Sejong University)
  • Received : 2021.10.06
  • Accepted : 2021.10.18
  • Published : 2021.12.28

Abstract

Outbreaks of food poisoning due to the consumption of norovirus-contaminated shellfish continue to occur. Male-specific (F+) coliphage has been suggested as an indicator of viral species due to the association with animal and human wastes. Here, we compared two methods, the double agar overlay and the quantitative real-time PCR (RT-PCR)-based method, for evaluating the applicability of F+ coliphage-based detection technique in microbial contamination tracking of shellfish samples. The RT-PCR-based method showed 1.6-39 times higher coliphage PFU values from spiked shellfish samples, in relation to the double agar overlay method. These differences indicated that the RT-PCR-based technique can detect both intact viruses and non-particle-protected viral DNA/RNA, suggesting that the RT-PCR based method could be a more efficient tool for tracking microbial contamination in shellfish. However, the virome information on F+ coliphage-contaminated oyster samples revealed that the high specificity of the RT-PCR- based method has a limitation in microbial contamination tracking due to the genomic diversity of F+ coliphages. Further research on the development of appropriate primer sets for microbial contamination tracking is therefore necessary. This study provides preliminary insight that should be examined in the search for suitable microbial contamination tracking methods to control the sanitation of shellfish and related seawater.

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Fisheries Science (R2021060).

References

  1. Le Guyader FS, Atmar RL, Le Pendu J. 2012. Transmission of viruses through shellfish: when specific ligands come into play. Curr. Opin. Virol. 2: 103-110. https://doi.org/10.1016/j.coviro.2011.10.029
  2. Lopman BA, Steele D, Kirkwood CD, Parashar UD. 2016. The vast and varied global burden of norovirus: Prospects for prevention and control. PLoS Med. 13: e1001999. https://doi.org/10.1371/journal.pmed.1001999
  3. Ministry of Food and Drug Safety (South Korea). 2021. Ministry of Food and Drug Safety White Paper 2021.
  4. Liang Z, He Z, Zhou X, Powell CA, Yang Y, He LM, et al. 2013. Impact of mixed land-use practices on the microbial water quality in a subtropical coastal watershed. Sci. Total Environ. 449: 426-433. https://doi.org/10.1016/j.scitotenv.2013.01.087
  5. Ueki Y, Shoji M, Suto A, Tanabe T, Okimura Y, Kikuchi Y, et al. 2007. Persistence of caliciviruses in artificially contaminated oysters during depuration. Appl. Environ. Microbiol. 73: 5698-5701. https://doi.org/10.1128/AEM.00290-07
  6. Polo D, Alvarez C, Diez J, Darriba S, Longa A, Romalde JL. 2014. Viral elimination during commercial depuration of shellfish. Food Control 43: 206-212. https://doi.org/10.1016/j.foodcont.2014.03.022
  7. Campos CJ, Avant J, Gustar N, Lowther J, Powell A, Stockley L, et al. 2015. Fate of human noroviruses in shellfish and water impacted by frequent sewage pollution events. Environ. Sci. Technol. 49: 8377-8385. https://doi.org/10.1021/acs.est.5b01268
  8. Havelaar A, Van Olphen M, Drost Y. 1993. F-specific RNA bacteriophages are adequate model organisms for enteric viruses in fresh water. Appl. Environ. Microbiol. 59: 2956-2962. https://doi.org/10.1128/aem.59.9.2956-2962.1993
  9. Tree JA, Adams MR, Lees DN. 2003. Chlorination of indicator bacteria and viruses in primary sewage effluent. Appl. Environ. Microbiol. 69: 2038-2043. https://doi.org/10.1128/AEM.69.4.2038-2043.2003
  10. Reynolds KA. 1992. Evaluation of methods for the recovery and quantitation of bacteriophage from marine waters and sediment. University of South Florida.
  11. Goblick GN, Anbarchian JM, Woods J, Burkhardt W, Calci K. 2011. Evaluating the dilution of wastewater treatment plant effluent and viral impacts on shellfish growing areas in Mobile Bay, Alabama. J. Shellfish Res. 30: 979-987. https://doi.org/10.2983/035.030.0341
  12. Pouillot R, Van Doren JM, Woods J, Plante D, Smith M, Goblick G, et al. 2015. Meta-analysis of the reduction of norovirus and male-specific coliphage concentrations in wastewater treatment plants. Appl. Environ. Microbiol. 81: 4669-4681. https://doi.org/10.1128/AEM.00509-15
  13. McMinn BR, Ashbolt NJ, Korajkic A. 2017. Bacteriophages as indicators of faecal pollution and enteric virus removal. Lett. Appl. Microbiol. 65: 11-26. https://doi.org/10.1111/lam.12736
  14. Lee JE, Lim MY, Kim SY, Lee S, Lee H, Oh H-M, et al. 2009. Molecular characterization of bacteriophages for microbial source tracking in Korea. Appl. Environ. Microbiol. 75: 7107-7114. https://doi.org/10.1128/AEM.00464-09
  15. Lee JE, Lee H, Cho Y-H, Hur H-G, Ko G. 2011. F+ RNA coliphage-based microbial source tracking in water resources of South Korea. Sci. Total Environ. 412: 127-131. https://doi.org/10.1016/j.scitotenv.2011.09.061
  16. Kim JY, Lee H, Lee JE, Chung M-S, Ko GP. 2013. Identification of human and animal fecal contamination after rainfall in the Han River, Korea. Microbes Environ. 28: 187-194. https://doi.org/10.1264/jsme2.ME12187
  17. Rose JB, Zhou X, Griffin DW, Paul JH. 1997. Comparison of PCR and plaque assay for detection and enumeration of coliphage in polluted marine waters. Appl. Environ. Microbiol. 63: 4564-4566. https://doi.org/10.1128/aem.63.11.4564-4566.1997
  18. Brion G, Meschke J, Sobsey M. 2002. F-specific RNA coliphages: occurrence, types, and survival in natural waters. Water Res. 36: 2419-2425. https://doi.org/10.1016/S0043-1354(01)00547-4
  19. Dore WJ, Henshilwood K, Lees DN. 2000. Evaluation of F-specific RNA bacteriophage as a candidate human enteric virus indicator for bivalve molluscan shellfish. Appl. Environ. Microbiol. 66: 1280-1285. https://doi.org/10.1128/AEM.66.4.1280-1285.2000
  20. Tong ST, Chen W. 2002. Modeling the relationship between land use and surface water quality. J. Environ. Manage. 66: 377-393. https://doi.org/10.1006/jema.2002.0593
  21. Havelaar A, Pot-Hogeboom W, Furuse K, Pot R, Hormann M. 1990. F-specific RNA bacteriophages and sensitive host strains in faeces and wastewater of human and animal origin. J. Appl. Bacteriol. 69: 30-37. https://doi.org/10.1111/j.1365-2672.1990.tb02908.x
  22. Stetler R, Jr FW. 1996. Pretreatment to reduce somatic Salmonella phage interference with FRNA coliphage assays: Successful use in a one-year survey of vulnerable groundwaters. Lett. Appl. Microbiol. 23: 49-54. https://doi.org/10.1111/j.1472-765X.1996.tb00027.x
  23. Woody MA, Cliver DO. 1995. Effects of temperature and host cell growth phase on replication of F-specific RNA coliphage Q beta. Appl. Environ. Microbiol. 61: 1520-1526. https://doi.org/10.1128/aem.61.4.1520-1526.1995
  24. Atmar RL, Neill FH, Woodley CM, Manger R, Fout GS, Burkhardt W, et al. 1996. Collaborative evaluation of a method for the detection of Norwalk virus in shellfish tissues by PCR. Appl. Environ. Microbiol. 62: 254-258. https://doi.org/10.1128/aem.62.1.254-258.1996
  25. Cormier J, Janes M. 2014. A double layer plaque assay using spread plate technique for enumeration of bacteriophage MS2. J Virol. Methods 196: 86-92. https://doi.org/10.1016/j.jviromet.2013.10.034
  26. Choi S, Jiang SC. 2005. Real-time PCR quantification of human adenoviruses in urban rivers indicates genome prevalence but low infectivity. Appl. Environ. Microbiol. 71: 7426-7433. https://doi.org/10.1128/AEM.71.11.7426-7433.2005
  27. Skraber S, Gantzer C, Maul A, Schwartzbrod L. 2002. Fates of bacteriophages and bacterial indicators in the Moselle river (France). Water Res. 36: 3629-3637. https://doi.org/10.1016/S0043-1354(02)00063-5
  28. Correa AdA, Rigotto C, Moresco V, Kleemann CR, Teixeira AL, Poli CR, et al. 2012. The depuration dynamics of oysters (Crassostrea gigas) artificially contaminated with hepatitis A virus and human adenovirus. Memorias do Instituto Oswaldo Cruz. 107: 11-17. https://doi.org/10.1590/S0074-02762012000100002
  29. Rotkin-Ellman M, Wong KK, Solomon GM. 2012. Seafood contamination after the BP Gulf oil spill and risks to vulnerable populations: a critique of the FDA risk assessment. Environ. Health Persp. 120: 157-161. https://doi.org/10.1289/ehp.1103695
  30. Burkhardt III W. 2004. Enumeration of male-specific bacteriophage in water and shellfish tissue. Gulf Coast Seafood Laboratory, Office of Seafood, US Food and Drug Administration, Dauphin Island, AL.
  31. Dineen SM, Aranda IV R, Dietz ME, Anders DL, Robertson JM. 2010. Evaluation of commercial RNA extraction kits for the isolation of viral MS2 RNA from soil. J. Virol. Methods 168: 44-50. https://doi.org/10.1016/j.jviromet.2010.04.014
  32. Dreier J, Stormer M, Kleesiek K. 2005. Use of bacteriophage MS2 as an internal control in viral reverse transcription-PCR assays. J. Clin. Microbiol. 43: 4551-4557. https://doi.org/10.1128/JCM.43.9.4551-4557.2005
  33. O'Connell KP, Bucher JR, Anderson PE, Cao CJ, Khan AS, Gostomski MV, et al. 2006. Real-time fluorogenic reverse transcription-PCR assays for detection of bacteriophage MS2. Appl. Environ. Microbiol. 72: 478-483. https://doi.org/10.1128/AEM.72.1.478-483.2006
  34. Edelman DC, Barletta J. 2003. Real-time PCR provides improved detection and titer determination of bacteriophage. Biotechniques 35: 368-375. https://doi.org/10.2144/03352rr02
  35. Meng R, Jiang M, Cui Z, Chang J-Y, Yang K, Jakana J, et al. 2019. Structural basis for the adsorption of a single-stranded RNA bacteriophage. Nat. Commun. 10: 3130. https://doi.org/10.1038/s41467-019-11126-8
  36. Acs N, Gambino M, Brondsted L. 2020. Bacteriophage enumeration and detection methods. Front. Microbiol. 11: 2662.
  37. Clokie MRJ, Kropinski AM. 2009. Bacteriophages: methods and protocols. Humana Press, New York, NY.
  38. Sundram A, Jumanlal N, Ehlers MM. 2006. Genotyping of F-RNA coliphages isolated from wastewater and river water samples. Water SA. 32: 65-70.
  39. Cole D, Long SC, Sobsey MD. 2003. Evaluation of F+ RNA and DNA coliphages as source-specific indicators of fecal contamination in surface waters. Appl. Environ. Microbiol. 69: 6507-6514. https://doi.org/10.1128/AEM.69.11.6507-6514.2003
  40. Stewart JR, Vinje J, Oudejans SJ, Scott GI, Sobsey MD. 2006. Sequence variation among group III F-specific RNA coliphages from water samples and swine lagoons. Appl. Environ. Microbiol. 72: 1226-1230. https://doi.org/10.1128/AEM.72.2.1226-1230.2006
  41. Friedman SD, Genthner FJ, Gentry J, Sobsey MD, Vinje J. 2009. Gene mapping and phylogenetic analysis of the complete genome from 30 single-stranded RNA male-specific coliphages (family Leviviridae). J. Virol. 83: 11233-11243. https://doi.org/10.1128/JVI.01308-09
  42. Bollback JP, Huelsenbeck JP. 2001. Phylogeny, genome evolution, and host specificity of single-stranded RNA bacteriophage (family Leviviridae). J. Mol. Evol. 52: 117-128. https://doi.org/10.1007/s002390010140