DOI QR코드

DOI QR Code

Rapid and Visual Detection of Vibrio parahaemolyticus in Aquatic Foods Using blaCARB-17 Gene-Based Loop-Mediated Isothermal Amplification with Lateral Flow Dipstick (LAMP-LFD)

  • Hu, Yuan-qing (School of Biological Science and Biotechnology, Minnan Normal University) ;
  • Huang, Xian-hui (School of Biological Science and Biotechnology, Minnan Normal University) ;
  • Guo, Li-qing (Zhangzhou Center for Disease Control and Prevention) ;
  • Shen, Zi-chen (School of Biological Science and Biotechnology, Minnan Normal University) ;
  • LV, Lin-xue (School of Biological Science and Biotechnology, Minnan Normal University) ;
  • Li, Feng-xia (School of Biological Science and Biotechnology, Minnan Normal University) ;
  • Zhou, Zan-hu (Comprehensive Technical Service Center, Zhangzhou Customs) ;
  • Zhang, Dan-feng (School of Biological Science and Biotechnology, Minnan Normal University)
  • Received : 2021.07.12
  • Accepted : 2021.09.02
  • Published : 2021.12.28

Abstract

Vibrio parahaemolyticus is recognized as one of the most important foodborne pathogens responsible for gastroenteritis in humans. The blaCARB-17 gene is an intrinsic β-lactamase gene and a novel species-specific genetic marker of V. parahaemolyticus. In this study, a loop-mediated isothermal amplification (LAMP) assay combined with a lateral flow dipstick (LFD) was developed targeting this blaCARB-17 gene. The specificity of LAMP-LFD was ascertained by detecting V. parahaemolyticus ATCC 17802 and seven other non-V. parahaemolyticus strains. Finally, the practicability of LAMP-LFD was confirmed by detection with V. parahaemolyticus-contaminated samples and natural food samples. The results showed that the optimized reaction parameters of LAMP are as follows: 2.4 mmol/l Mg2+, 0.96 mmol/l dNTPs, 4.8 U Bst DNA polymerase, and an 8:1 ratio of inner primer to outer primer, at 63℃ for 40 min. The optimized reaction time of the LFD assay is 60 min. Cross-reactivity analysis with the seven non-V. parahaemolyticus strains showed that LAMP-LFD was exclusively specific for V. parahaemolyticus. The detection limit of LAMP-LFD for V. parahaemolyticus genomic DNA was 2.1 × 10-4 ng/μl, corresponding to 630 fg/reaction and displaying a sensitivity that is 100-fold higher than that of conventional PCR. LAMP-LFD in a spiking study revealed a detection limit of approximately 6 CFU/ml, which was similar with conventional PCR. The developed LAMP-LFD specifically identified the 10 V. parahaemolyticus isolates from 30 seafood samples, suggesting that this LAMP-LFD may be a suitable diagnostic method for detecting V. parahaemolyticus in aquatic foods.

Keywords

Acknowledgement

This work was supported by the Project of Fujian Natural Science Foundation of China [Grant No. 2021J01995, 2020J01809]; the Open Program of Jiangsu Key Laboratory of Zoonosis [Grant No. R1402]; and the Project of Natural Science Foundation of General Customs Administration [Grant No. 2019HK103].

References

  1. Ndraha N, Wong Hc, Hsiao HI. 2020. Managing the risk of Vibrio parahaemolyticus infections associated with oyster consumption: A review. Compr. Rev. Food Sci. Food Saf. 19: 1187-1217. https://doi.org/10.1111/1541-4337.12557
  2. Chen H, Dong S, Yan Y, Zhan L, Zhang J, Chen J, et al. 2021. Prevalence and population analysis of Vibrio parahaemolyticus isolated from freshwater fish in Zhejiang province, China. Foodborne Pathog. Dis. 18: 139-146. https://doi.org/10.1089/fpd.2020.2798
  3. Silva IP, de Souza Carneiro C, Saraiva MAF, de Oliveira TAS, de Sousa OV, Evangelista-Barreto NS. 2018. Antimicrobial resistance and potential virulence of Vibrio parahaemolyticus isolated from water and bivalve mollusks from Bahia, Brazil. Mar. Pollut. Bull. 131: 757-762. https://doi.org/10.1016/j.marpolbul.2018.05.007
  4. Yang C, Zhang X, Fan H, Li Y, Hu Q, Yang R, et al. 2019. Genetic diversity, virulence factors and farm-to-table spread pattern of Vibrio parahaemolyticus food-associated isolates. Food Microbiol. 84: 103270. https://doi.org/10.1016/j.fm.2019.103270
  5. Bisha B, Simonson J, Janes M, Bauman K, Goodridge LD. 2012. A review of the current status of cultural and rapid detection ofVibrio parahaemolyticus. Int. J. Food Sci. Technol. 47: 885-899. https://doi.org/10.1111/j.1365-2621.2012.02950.x
  6. Wang R, Zhong Y, Gu X, Yuan J, Saeed AF, Wang S. 2015. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front. Microbiol. 6: 144. https://doi.org/10.3389/fmicb.2015.00144
  7. Letchumanan V, Chan K-G, Lee L-H. 2014. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front. Microbiol. 5: 705. https://doi.org/10.3389/fmicb.2014.00705
  8. Bonnin-Jusserand M, Copin S, Le Bris C, Brauge T, Gay M, Brisabois A, et al. 2019. Vibrio species involved in seafood-borne outbreaks (Vibrio cholerae, V. parahaemolyticus and V. vulnificus): review of microbiological versus recent molecular detection methods in seafood products. Crit. Rev. Food Sci. Nutr. 59: 597-610. https://doi.org/10.1080/10408398.2017.1384715
  9. Yu J, Xing JH, Zhan XJ, Yang Z, Qi J, Wei YX, et al. 2020. Improvement of loop-mediated isothermal amplification combined with chromatographic flow dipstick assay for Salmonella in food samples. Food Anal.Methods 13: 1398-1408. https://doi.org/10.1007/s12161-020-01760-0
  10. Wang L, Chen G, Zhang C, Wang Y, Sun R. 2020. Application of loop-mediated isothermal amplification combined with lateral flow dipstick to rapid and sensitive detection of Alexandrium catenella. Environ. Sci. Pollut. Res. 27: 4246-4257. https://doi.org/10.1007/s11356-019-06889-y
  11. Tomita N, Mori Y, Kanda H, Notomi T. 2008. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 3: 877-882. https://doi.org/10.1038/nprot.2008.57
  12. Notomi T, Mori Y, Tomita N, Kanda H. 2015. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J. Microbiol. 53: 1-5. https://doi.org/10.1007/s12275-015-4656-9
  13. Mori Y, Notomi T. 2009. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J. Infect. Chemother. 15: 62-69. https://doi.org/10.1007/s10156-009-0669-9
  14. Jang WS, Lim DH, Yoon J, Kim A, Lim M, Nam J, et al. 2021. Development of a multiplex loop-mediated isothermal amplification (LAMP) assay for on-site diagnosis of SARS CoV-2. PLoS One 16: e0248042. https://doi.org/10.1371/journal.pone.0248042
  15. Kong C, Wang Y, Fodjo EK, Yang G-x, Han F, Shen X-s. 2018. Loop-mediated isothermal amplification for visual detection of Vibrio parahaemolyticus using gold nanoparticles. Microchim. Acta 185: 35. https://doi.org/10.1007/s00604-017-2594-4
  16. Chen Y, Cheng N, Xu Y, Huang K, Luo Y, Xu W. 2016. Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor. Biosens. Bioelectron. 81: 317-323. https://doi.org/10.1016/j.bios.2016.03.006
  17. Xing J, Yu J, Liu Y. 2020. Improvement and evaluation of loop-mediated isothermal amplification combined with chromatographic flow dipstick assays for Vibrio parahaemolyticus. J.Microbiol. Methods 171:105866. https://doi.org/10.1016/j.mimet.2020.105866
  18. Allgower SM, Hartmann CA, Holzhauser T. 2020. The development of highly specific and sensitive primers for the detection of potentially allergenic soybean (Glycine max) using loop-mediated isothermal amplification combined with lateral flow dipstick (LAMP-LFD). Foods 9: 423. https://doi.org/10.3390/foods9040423
  19. Dai T, Yang X, Hu T, Jiao B, Xu Y, Zheng X, et al. 2019. Comparative evaluation of a novel recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) assay, LAMP, conventional PCR, and leaf-disc baiting methods for detection of Phytophthora sojae. Front. Microbiol. 10: 1884. https://doi.org/10.3389/fmicb.2019.01884
  20. Anupama KP, Chakraborty A, Karunasagar I, Karunasagar I, Maiti B. 2019. Loop-mediated isothermal amplification assay as a point-of-care diagnostic tool for Vibrio parahaemolyticus: recent developments and improvements. Exp. Rev. Mol. Diagn. 19: 229-239. https://doi.org/10.1080/14737159.2019.1571913
  21. Siddique MP, Jang WJ, Lee JM, Ahn SH, Suraiya S, Kim CH, et al. 2017. groEL is a suitable genetic marker for detecting Vibrio parahaemolyticus by loop-mediated isothermal amplification assay. Lett. Appl. Microbiol. 65: 106-113. https://doi.org/10.1111/lam.12760
  22. Li R, Chiou J, Chan EW-C, Chen S. 2016. A novel PCR-based approach for accurate identification of Vibrio parahaemolyticus. Front. Microbiol. 7: 44. https://doi.org/10.3389/fmicb.2016.00044
  23. Chiou J, Li R, Chen S. 2015. CARB-17 family of β-lactamases mediates intrinsic resistance to penicillins in Vibrio parahaemolyticus. Antimicrob. Agents Chemother. 59: 3593-3595. https://doi.org/10.1128/AAC.00047-15
  24. Hossain MMM, Uddin MI, Islam H, Fardoush J, Rupom MAH, Hossain MM, et al. 2020. Diagnosis, genetic variations, virulence, and toxicity of AHPND-positive Vibrio parahaemolyticus in Penaeus monodon. Aquac. Int. 28: 2531-2546. https://doi.org/10.1007/s10499-020-00607-z
  25. Hu Y, Li F, Zheng Y, Jiao X, Guo L. 2020. Isolation, molecular characterization and antibiotic susceptibility pattern of Vibrio parahaemolyticus from aquatic products in the southern Fujian coast, China. J. Microbiol. Biotechnol. 30: 856-867. https://doi.org/10.4014/jmb.2001.01005
  26. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28: E63. https://doi.org/10.1093/nar/28.12.e63
  27. Gbp A, Rka B, Aapm C, Mm A, Skm B, Al B, et al. Rapid and visual detection of Salmonella in meat using invasin A (invA) gene-based loop-mediated isothermal amplification assay. LWT 126: 109262.
  28. Hu Y, Li F, Zheng Y, Zeng Z, Zhang G, Zhang D, et al. 2020. Prevalence and population analysis of Vibrio parahaemolyticus in retail aquatic products from the southern Fujian coast, China. J. Food Saf. 40: e12842.
  29. Law JW-F, Ab Mutalib N-S, Chan K-G, Lee L-H. 2015. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front. Microbiol. 5: 770. https://doi.org/10.3389/fmicb.2014.00770
  30. Mei X, Zhai X, Lei C, Ye X, Kang Z, Wu X, et al. 2019. Development and application of a visual loop-mediated isothermal amplification combined with lateral flow dipstick (LAMP-LFD) method for rapid detection of Salmonella strains in food samples. Food Control 104: 9-19. https://doi.org/10.1016/j.foodcont.2019.04.014
  31. Hatano B, Maki T, Obara T, Fukumoto H, Hagisawa K, Matsushita Y, et al. 2010. LAMP using a disposable pocket warmer for anthrax detection, a highly mobile and reliable method for anti-bioterrorism. Jap. J. Infect. Dis. 63: 36-40. https://doi.org/10.7883/yoken.63.36
  32. Pasookhush P, Longyant S, Sithigorngul P, Chaivisuthangkura P. 2016. Development of duplex loop-mediated isothermal amplification (dLAMP) combined with lateral flow dipstick (LFD) for the rapid and specific detection of Vibrio vulnificus and V. parahaemolyticus. North American J. Aquac. 78: 327-336. https://doi.org/10.1080/15222055.2016.1173609
  33. Prompamorn P, Sithigorngul P, Rukpratanporn S, Longyant S, Sridulyakul P, Chaivisuthangkura P. 2011. The development of loop-mediated isothermal amplification combined with lateral flow dipstick for detection of Vibrio parahaemolyticus. Lett. Appl. Microbiol. 52: 344-351. https://doi.org/10.1111/j.1472-765X.2011.03007.x
  34. Amalina N, Ina-Salwany M. 2016. Recent advancements in molecular detection of Vibrio species in aquatic animals: A review. Biosci. Biotechnol. Res. Commun. 9: 349-356. https://doi.org/10.21786/bbrc/9.3/3
  35. Li J, Liang W, Xu S, Shi J, Zhou X, Liu B, et al. 2019. Rapid and sensitive detection of Senecavirus A by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick method. PLoS One 14: e0216245. https://doi.org/10.1371/journal.pone.0216245
  36. Li Y, Fan P, Zhou S, Zhang L. 2017. Loop-mediated isothermal amplification (LAMP): a novel rapid detection platform for pathogens. Microb. Pathog. 107: 54-61. https://doi.org/10.1016/j.micpath.2017.03.016
  37. Hafner G, Yang I, Wolter L, Stafford M, Giffard P. 2001. Isothermal amplification and multimerization of DNA by Bst DNA polymerase. Biotechniques 30: 852-867. https://doi.org/10.2144/01304rr03
  38. Nagamine K, Hase T, Notomi T. 2002. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 16: 223-229. https://doi.org/10.1006/mcpr.2002.0415
  39. Shang Y, Sun J, Ye Y, Zhang J, Zhang Y, Sun X. 2020. Loop-mediated isothermal amplification-based microfluidic chip for pathogen detection. Crit. Rev. Food Sci. Nutr. 60: 201-224. https://doi.org/10.1080/10408398.2018.1518897
  40. Kumar Y, Bansal S, Jaiswal P. 2017. Loop-mediated isothermal amplification (LAMP): a rapid and sensitive tool for quality assessment of meat products. Comp. Rev. Food Sci. Food Saf. 16: 1359-1378. https://doi.org/10.1111/1541-4337.12309
  41. Liu N, Zou D, Dong D, Yang Z, Ao D, Liu W, et al. 2017. Development of a multiplex loop-mediated isothermal amplification method for the simultaneous detection of Salmonella spp. and Vibrio parahaemolyticus. Sci. Rep. 7: 45601. https://doi.org/10.1038/srep45601
  42. Wang Y, Li D, Wang Y, Li K, Ye C. 2016. Rapid and sensitive detection of Vibrio parahaemolyticus and Vibrio vulnificus by multiple endonuclease restriction real-time loop-mediated isothermal amplification technique. Molecules 21: E111.
  43. Yamazaki W, Kumeda Y, Misawa N, Nakaguchi Y, Nishibuchi M. 2010. Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of the tdh and trh genes of Vibrio parahaemolyticus and related Vibrio species. Appl. Environ. Microbiol. 76: 820-828. https://doi.org/10.1128/AEM.02284-09
  44. Wang L, Shi L, Su J, Ye Y, Zhong Q. 2013. Detection of Vibrio parahaemolyticus in food samples using in situ loop-mediated isothermal amplification method. Gene 515: 421-425. https://doi.org/10.1016/j.gene.2012.12.039