DOI QR코드

DOI QR Code

SCO6992, a Protein with β-Glucuronidase Activity, Complements a Mutation at the absR Locus and Promotes Antibiotic Biosynthesis in Streptomyces coelicolor

  • Jin, Xue-Mei (Department of Bioscience and Bioinformatics, Myongji University) ;
  • Choi, Mu-Yong (Department of Biotechnology. The University of Suwon) ;
  • Tsevelkhoroloo, Maral (Department of Bioscience and Bioinformatics, Myongji University) ;
  • Park, Uhnmee (Department of Biotechnology. The University of Suwon) ;
  • Suh, Joo-Won (Department of Bioscience and Bioinformatics, Myongji University) ;
  • Hong, Soon-Kwang (Department of Bioscience and Bioinformatics, Myongji University)
  • Received : 2021.08.02
  • Accepted : 2021.09.23
  • Published : 2021.11.28

Abstract

Streptomyces coelicolor is a filamentous soil bacterium producing several kinds of antibiotics. S. coelicolor abs8752 is an abs (antibiotic synthesis deficient)-type mutation at the absR locus; it is characterized by an incapacity to produce any of the four antibiotics synthesized by its parental strain J1501. A chromosomal DNA fragment from S. coelicolor J1501, capable of complementing the abs- phenotype of the abs8752 mutant, was cloned and analyzed. DNA sequencing revealed that two complete ORFs (SCO6992 and SCO6993) were present in opposite directions in the clone. Introduction of SCO6992 in the mutant strain resulted in a remarkable increase in the production of two pigmented antibiotics, actinorhodin and undecylprodigiosin, in S. coelicolor J1501 and abs8752. However, introduction of SCO6993 did not show any significant difference compared to the control, suggesting that SCO6992 is primarily involved in stimulating the biosynthesis of antibiotics in S. coelicolor. In silico analysis of SCO6992 (359 aa, 39.5 kDa) revealed that sequences homologous to SCO6992 were all annotated as hypothetical proteins. Although a metalloprotease domain with a conserved metal-binding motif was found in SCO6992, the recombinant rSCO6992 did not show any protease activity. Instead, it showed very strong β-glucuronidase activity in an API ZYM assay and toward two artificial substrates, p-nitrophenyl-β-D-glucuronide and AS-BI-β-D-glucuronide. The binding between rSCO6992 and Zn2+ was confirmed by circular dichroism spectroscopy. We report for the first time that SCO6992 is a novel protein with β-glucuronidase activity, that has a distinct primary structure and physiological role from those of previously reported β-glucuronidases.

Keywords

Acknowledgement

The Authors are extremely grateful to Dr. Charnpness in Michigan State Univ. for the Streptomyces coelicolor abs8752 strain. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2020R1F1A1060789).

References

  1. Lu T, Cao Q, Pang X, Xia Y, Xun L, Liu H. 2020. Sulfane sulfur-activated actinorhodin production and sporulation is maintained by a natural gene circuit in Streptomyces coelicolor. Microb. Biotechnol. 13: 1917-1932. https://doi.org/10.1111/1751-7915.13637
  2. Liu G, Chater KF, Chandra G, Niu G, Tan H. 2013. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol. Mol. Biol. Rev. 77: 112-143. https://doi.org/10.1128/MMBR.00054-12
  3. Chater KF. 2013. Curing baldness activates antibiotic production. Chem. Biol. 20: 1199-1200. https://doi.org/10.1016/j.chembiol.2013.10.001
  4. Brian P, Riggle PJ, Santos RA, Champness WC. 1996. Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative signal transduction system. J. Bacteriol. 178: 3221-3231. https://doi.org/10.1128/jb.178.11.3221-3231.1996
  5. Bentley SD, Chater KF, Cerdeno-Tarraga A-M, Challis GL, Thomson NR, James KD, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147. https://doi.org/10.1038/417141a
  6. Ryding NJ, Anderson TB, Champness WC. 2002. Regulation of the Streptomyces coelicolor calcium-dependent antibiotic by absA, encoding a cluster-linked two-component system. J. Bacteriol. 184: 794-805. https://doi.org/10.1128/JB.184.3.794-805.2002
  7. Price B, Adamidis T, Kong R, Champness W. 1999. A Streptomyces coelicolor antibiotic regulatory gene, absB, encodes an RNase III homolog. J. Bacteriol. 181: 6142-6151. https://doi.org/10.1128/jb.181.19.6142-6151.1999
  8. Gravenbeek ML, Jones GH. 2008. The endonuclease activity of RNase III is required for the regulation of antibiotic production by Streptomyces coelicolor. Microbiology 154(Pt 11): 3547-3555. https://doi.org/10.1099/mic.0.2008/022095-0
  9. Hesketh A, Kock H, Mootien S, Bibb M. 2009. The role of absC, a novel regulatory gene for secondary metabolism, in zinc-dependent antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 74: 1427-1444. https://doi.org/10.1111/j.1365-2958.2009.06941.x
  10. van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. 2018. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat. Prod. Rep. 35: 575-604. https://doi.org/10.1039/c8np00012c
  11. Park U, Suh JW, Hong SK. 2000. Genetic analysis of absR, a new abs locus of Streptomyces coelicolor. J. Microbiol. Biotechnol. 10: 169-175.
  12. Hong SK, Kito M, Beppu T, Horinouchi S. 1991. Phosphorylation of the AfsR product, a global regulatory protein for secondary-metabolite formation in Streptomyces coelicolor A3(2). J. Bacteriol. 173: 2311-2318. https://doi.org/10.1128/jb.173.7.2311-2318.1991
  13. Kieser H, Bibb MJ, Buttner MJ, Chater FK, Hopwood DA. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, UK.
  14. Anderson TB, Brian P, Champness WC. 2001. Genetic and transcriptional analysis of absA, an antibiotic gene cluster-linked two-component system that regulates multiple antibiotics in Streptomyces coelicolor. Mol. Microbiol. 39: 553-566. https://doi.org/10.1046/j.1365-2958.2001.02240.x
  15. Vara J, Lewandowska-Skarbek M, Wang YG, Donadio S, Hutchinson CR. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J. Bacteriol. 171: 5872-5881. https://doi.org/10.1128/jb.171.11.5872-5881.1989
  16. Tsevelkhorloo M, Kim SH, Kang DK, Lee CR, Hong SK. 2021. NADP+-dependent dehydrogenase SCO3486 and cycloisomerase SCO3480: key enzymes for 3,6-anhydro-L-galactose catabolism in Streptomyces coelicolor A3(2). J. Microbiol. Biotechnol. 31: 756-763. https://doi.org/10.4014/jmb.2103.03030
  17. Choi SS, Chi WJ, Lee JH, Kang SS, Jeong BC, Hong SK. 2001. Overexpression of the sprD gene encoding Streptomyces griseus protease D stimulates actinorhodin production in Streptomyces lividans. J. Microbiol. 39: 305-313
  18. Yuan D, Shen Z, Liu R, Chi Z, Zhu J. 2011. Study on the binding of cerium to bovine serum albumin. J. Biochem. Mol. Toxicol. 25: 263-268. https://doi.org/10.1002/jbt.20385
  19. Chern CJ. 1977. Detection of active heteropolymeric beta-glucuronidase in hybrids between mouse cells and human fibroblasts with beta-glucuronidase deficiency. Proc. Natl. Acad. Sci. USA 74: 2948-2952. https://doi.org/10.1073/pnas.74.7.2948
  20. Medda S, Swank RT. 1985. Egasyn, a protein which determines the subcellular distribution of beta-glucuronidase, has esterase activity. J. Biol. Chem. 260: 15802-15808. https://doi.org/10.1016/S0021-9258(17)36329-9
  21. Marchler-Bauer A, Bryant SH. 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32: 327-331.
  22. Baumann U, Wu S, Flaherty KM, McKay DB. 1993. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 12: 3357-3364. https://doi.org/10.1002/j.1460-2075.1993.tb06009.x
  23. Horinouchi S. 2003. AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J. Ind. Microbiol. Biotechnol. 30: 462-467. https://doi.org/10.1007/s10295-003-0063-z
  24. Fernandez-Moreno MA, Martin-Triana AJ, Martinez E, Niemi J, Kieser HM, Hopwood DA, et al. 1992. abaA, a new pleiotropic regulatory locus for antibiotic production in Streptomyces coelicolor. J. Bacteriol. 174: 2958-2967. https://doi.org/10.1128/jb.174.9.2958-2967.1992
  25. Lopez-Garcia MT, Yague P, Gonzalez-Quinonez N, Rioseras B, Manteca A. 2018. The SCO4117 ECF sigma factor pleiotropically controls secondary metabolism and morphogenesis in Streptomyces coelicolor. Front. Microbiol. 9: 312. https://doi.org/10.3389/fmicb.2018.00312
  26. Xu Z, Li Y. 2020. A MarR-family transcriptional factor MapR positively regulates actinorhodin production in Streptomyces coelicolor. FEMS Microbiol. Lett. 367: fnaa140. https://doi.org/10.1093/femsle/fnaa140
  27. Bhatia SK, Lee BR, Sathiyanarayanan G, Song HS, Kim J, Jeon JM, et al. 2016. Biomass-derived molecules modulate the behavior of Streptomyces coelicolor for antibiotic production. 3Biotech. 6: 223.
  28. Xu W, Huang J, Cohen SN. 2008. Autoregulation of AbsB (RNase III) expression in Streptomyces coelicolor by endoribonucleolytic cleavage of absB operon transcripts. J. Bacteriol. 190: 5526-5530. https://doi.org/10.1128/JB.00558-08
  29. Pisciotta A, Manteca A, Alduina R. 2018. The SCO1731 methyltransferase modulates actinorhodin production and morphological differentiation of Streptomyces coelicolor A3(2). Sci. Rep. 8: 13686. https://doi.org/10.1038/s41598-018-32027-8
  30. Nitta K, Carratore FD, Breitling R, Takano E, Putri SP, Fukusaki E. 2020. Multi-omics analysis of the effect of cAMP on actinorhodin production in Streptomyces coelicolor. Front. Bioeng. Biotechnol. 8: 595552. https://doi.org/10.3389/fbioe.2020.595552
  31. Kim DJ, Huh JH, Yang YY, Kang CM, Lee IH, Hyun CG, et al. 2003. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185: 592-600. https://doi.org/10.1128/JB.185.2.592-600.2003
  32. Shu D, Chen L, Wang W, Yu Z, Ren C, Zhang W, et al. 2009. afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 81: 1149-1160. https://doi.org/10.1007/s00253-008-1738-1
  33. Tomono A, Mashiko M, Shimazu T, Inoue H, Nagasawa H, Yoshida M, et al. 2006. Self-activation of serine/threonine kinase AfsK on autophosphorylation at threonine-168. J. Antibiot. 59: 117-123. https://doi.org/10.1038/ja.2006.18
  34. Umeyama T, Tanabe Y, Aigle BD, Horinouchi S. 1996. Expression of the Streptomyces coelicolor A3(2) ptpA gene encoding a phosphotyrosine protein phosphatase leads to overproduction of secondary metabolites in S. lividans. FEMS Microbiol. Lett. 144: 177-184. https://doi.org/10.1016/0378-1097(96)00359-X
  35. Demir Z, Bayraktar A, Tunca S. 2019. One extra copy of lon gene causes a dramatic increase in actinorhodin production by Streptomyces coelicolor A3(2). Curr. Microbiol. 76: 1045-1054. https://doi.org/10.1007/s00284-019-01719-3
  36. Wang P, Jia Y, Wu R, Chen Z, Yan R. 2021. Human gut bacterial β-glucuronidase inhibition: An emerging approach to manage medication therapy. Biochem. Pharmacol. 190: 114566. https://doi.org/10.1016/j.bcp.2021.114566
  37. Paradis FW, Shareck F, Dupont C, Kluepfel D, Morosoli R. 1996. Expression and secretion of beta-glucuronidase and Pertussis toxin S1 by Streptomyces lividans. Appl. Microbiol. Biotechnol. 45: 646-651. https://doi.org/10.1007/s002530050742
  38. Boukhris I, Dulermo T, Chouayekh H, Virolle MJ. 2016. Evidence for the negative regulation of phytase gene expression in Streptomyces lividans and Streptomyces coelicolor. J. Basic Microbiol. 56: 59-66. https://doi.org/10.1002/jobm.201500417
  39. Rudolph MM, Vockenhuber MP, Suess B. 2015. Conditional control of gene expression by synthetic riboswitches in Streptomyces coelicolor. Methods Enzymol. 550: 283-299. https://doi.org/10.1016/bs.mie.2014.10.036