Acknowledgement
The Authors are extremely grateful to Dr. Charnpness in Michigan State Univ. for the Streptomyces coelicolor abs8752 strain. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2020R1F1A1060789).
References
- Lu T, Cao Q, Pang X, Xia Y, Xun L, Liu H. 2020. Sulfane sulfur-activated actinorhodin production and sporulation is maintained by a natural gene circuit in Streptomyces coelicolor. Microb. Biotechnol. 13: 1917-1932. https://doi.org/10.1111/1751-7915.13637
- Liu G, Chater KF, Chandra G, Niu G, Tan H. 2013. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol. Mol. Biol. Rev. 77: 112-143. https://doi.org/10.1128/MMBR.00054-12
- Chater KF. 2013. Curing baldness activates antibiotic production. Chem. Biol. 20: 1199-1200. https://doi.org/10.1016/j.chembiol.2013.10.001
- Brian P, Riggle PJ, Santos RA, Champness WC. 1996. Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative signal transduction system. J. Bacteriol. 178: 3221-3231. https://doi.org/10.1128/jb.178.11.3221-3231.1996
- Bentley SD, Chater KF, Cerdeno-Tarraga A-M, Challis GL, Thomson NR, James KD, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147. https://doi.org/10.1038/417141a
- Ryding NJ, Anderson TB, Champness WC. 2002. Regulation of the Streptomyces coelicolor calcium-dependent antibiotic by absA, encoding a cluster-linked two-component system. J. Bacteriol. 184: 794-805. https://doi.org/10.1128/JB.184.3.794-805.2002
- Price B, Adamidis T, Kong R, Champness W. 1999. A Streptomyces coelicolor antibiotic regulatory gene, absB, encodes an RNase III homolog. J. Bacteriol. 181: 6142-6151. https://doi.org/10.1128/jb.181.19.6142-6151.1999
- Gravenbeek ML, Jones GH. 2008. The endonuclease activity of RNase III is required for the regulation of antibiotic production by Streptomyces coelicolor. Microbiology 154(Pt 11): 3547-3555. https://doi.org/10.1099/mic.0.2008/022095-0
- Hesketh A, Kock H, Mootien S, Bibb M. 2009. The role of absC, a novel regulatory gene for secondary metabolism, in zinc-dependent antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 74: 1427-1444. https://doi.org/10.1111/j.1365-2958.2009.06941.x
- van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. 2018. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat. Prod. Rep. 35: 575-604. https://doi.org/10.1039/c8np00012c
- Park U, Suh JW, Hong SK. 2000. Genetic analysis of absR, a new abs locus of Streptomyces coelicolor. J. Microbiol. Biotechnol. 10: 169-175.
- Hong SK, Kito M, Beppu T, Horinouchi S. 1991. Phosphorylation of the AfsR product, a global regulatory protein for secondary-metabolite formation in Streptomyces coelicolor A3(2). J. Bacteriol. 173: 2311-2318. https://doi.org/10.1128/jb.173.7.2311-2318.1991
- Kieser H, Bibb MJ, Buttner MJ, Chater FK, Hopwood DA. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, UK.
- Anderson TB, Brian P, Champness WC. 2001. Genetic and transcriptional analysis of absA, an antibiotic gene cluster-linked two-component system that regulates multiple antibiotics in Streptomyces coelicolor. Mol. Microbiol. 39: 553-566. https://doi.org/10.1046/j.1365-2958.2001.02240.x
- Vara J, Lewandowska-Skarbek M, Wang YG, Donadio S, Hutchinson CR. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J. Bacteriol. 171: 5872-5881. https://doi.org/10.1128/jb.171.11.5872-5881.1989
- Tsevelkhorloo M, Kim SH, Kang DK, Lee CR, Hong SK. 2021. NADP+-dependent dehydrogenase SCO3486 and cycloisomerase SCO3480: key enzymes for 3,6-anhydro-L-galactose catabolism in Streptomyces coelicolor A3(2). J. Microbiol. Biotechnol. 31: 756-763. https://doi.org/10.4014/jmb.2103.03030
- Choi SS, Chi WJ, Lee JH, Kang SS, Jeong BC, Hong SK. 2001. Overexpression of the sprD gene encoding Streptomyces griseus protease D stimulates actinorhodin production in Streptomyces lividans. J. Microbiol. 39: 305-313
- Yuan D, Shen Z, Liu R, Chi Z, Zhu J. 2011. Study on the binding of cerium to bovine serum albumin. J. Biochem. Mol. Toxicol. 25: 263-268. https://doi.org/10.1002/jbt.20385
- Chern CJ. 1977. Detection of active heteropolymeric beta-glucuronidase in hybrids between mouse cells and human fibroblasts with beta-glucuronidase deficiency. Proc. Natl. Acad. Sci. USA 74: 2948-2952. https://doi.org/10.1073/pnas.74.7.2948
- Medda S, Swank RT. 1985. Egasyn, a protein which determines the subcellular distribution of beta-glucuronidase, has esterase activity. J. Biol. Chem. 260: 15802-15808. https://doi.org/10.1016/S0021-9258(17)36329-9
- Marchler-Bauer A, Bryant SH. 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32: 327-331.
- Baumann U, Wu S, Flaherty KM, McKay DB. 1993. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 12: 3357-3364. https://doi.org/10.1002/j.1460-2075.1993.tb06009.x
- Horinouchi S. 2003. AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J. Ind. Microbiol. Biotechnol. 30: 462-467. https://doi.org/10.1007/s10295-003-0063-z
- Fernandez-Moreno MA, Martin-Triana AJ, Martinez E, Niemi J, Kieser HM, Hopwood DA, et al. 1992. abaA, a new pleiotropic regulatory locus for antibiotic production in Streptomyces coelicolor. J. Bacteriol. 174: 2958-2967. https://doi.org/10.1128/jb.174.9.2958-2967.1992
- Lopez-Garcia MT, Yague P, Gonzalez-Quinonez N, Rioseras B, Manteca A. 2018. The SCO4117 ECF sigma factor pleiotropically controls secondary metabolism and morphogenesis in Streptomyces coelicolor. Front. Microbiol. 9: 312. https://doi.org/10.3389/fmicb.2018.00312
- Xu Z, Li Y. 2020. A MarR-family transcriptional factor MapR positively regulates actinorhodin production in Streptomyces coelicolor. FEMS Microbiol. Lett. 367: fnaa140. https://doi.org/10.1093/femsle/fnaa140
- Bhatia SK, Lee BR, Sathiyanarayanan G, Song HS, Kim J, Jeon JM, et al. 2016. Biomass-derived molecules modulate the behavior of Streptomyces coelicolor for antibiotic production. 3Biotech. 6: 223.
- Xu W, Huang J, Cohen SN. 2008. Autoregulation of AbsB (RNase III) expression in Streptomyces coelicolor by endoribonucleolytic cleavage of absB operon transcripts. J. Bacteriol. 190: 5526-5530. https://doi.org/10.1128/JB.00558-08
- Pisciotta A, Manteca A, Alduina R. 2018. The SCO1731 methyltransferase modulates actinorhodin production and morphological differentiation of Streptomyces coelicolor A3(2). Sci. Rep. 8: 13686. https://doi.org/10.1038/s41598-018-32027-8
- Nitta K, Carratore FD, Breitling R, Takano E, Putri SP, Fukusaki E. 2020. Multi-omics analysis of the effect of cAMP on actinorhodin production in Streptomyces coelicolor. Front. Bioeng. Biotechnol. 8: 595552. https://doi.org/10.3389/fbioe.2020.595552
- Kim DJ, Huh JH, Yang YY, Kang CM, Lee IH, Hyun CG, et al. 2003. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185: 592-600. https://doi.org/10.1128/JB.185.2.592-600.2003
- Shu D, Chen L, Wang W, Yu Z, Ren C, Zhang W, et al. 2009. afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 81: 1149-1160. https://doi.org/10.1007/s00253-008-1738-1
- Tomono A, Mashiko M, Shimazu T, Inoue H, Nagasawa H, Yoshida M, et al. 2006. Self-activation of serine/threonine kinase AfsK on autophosphorylation at threonine-168. J. Antibiot. 59: 117-123. https://doi.org/10.1038/ja.2006.18
- Umeyama T, Tanabe Y, Aigle BD, Horinouchi S. 1996. Expression of the Streptomyces coelicolor A3(2) ptpA gene encoding a phosphotyrosine protein phosphatase leads to overproduction of secondary metabolites in S. lividans. FEMS Microbiol. Lett. 144: 177-184. https://doi.org/10.1016/0378-1097(96)00359-X
- Demir Z, Bayraktar A, Tunca S. 2019. One extra copy of lon gene causes a dramatic increase in actinorhodin production by Streptomyces coelicolor A3(2). Curr. Microbiol. 76: 1045-1054. https://doi.org/10.1007/s00284-019-01719-3
- Wang P, Jia Y, Wu R, Chen Z, Yan R. 2021. Human gut bacterial β-glucuronidase inhibition: An emerging approach to manage medication therapy. Biochem. Pharmacol. 190: 114566. https://doi.org/10.1016/j.bcp.2021.114566
- Paradis FW, Shareck F, Dupont C, Kluepfel D, Morosoli R. 1996. Expression and secretion of beta-glucuronidase and Pertussis toxin S1 by Streptomyces lividans. Appl. Microbiol. Biotechnol. 45: 646-651. https://doi.org/10.1007/s002530050742
- Boukhris I, Dulermo T, Chouayekh H, Virolle MJ. 2016. Evidence for the negative regulation of phytase gene expression in Streptomyces lividans and Streptomyces coelicolor. J. Basic Microbiol. 56: 59-66. https://doi.org/10.1002/jobm.201500417
- Rudolph MM, Vockenhuber MP, Suess B. 2015. Conditional control of gene expression by synthetic riboswitches in Streptomyces coelicolor. Methods Enzymol. 550: 283-299. https://doi.org/10.1016/bs.mie.2014.10.036