DOI QR코드

DOI QR Code

Determination of the Length of Target Recognition Sequence in sgRNA Required for CRISPR Interference

CRISPR 간섭에 필요한 sgRNA 표적 인식 서열 길이의 결정

  • Kim, Bumjoon (Department of Systems Biotechnology, Chung-Ang University) ;
  • Kim, Byeong Chan (Department of Systems Biotechnology, Chung-Ang University) ;
  • Lee, Ho Joung (Department of Systems Biotechnology, Chung-Ang University) ;
  • Lee, Sang Jun (Department of Systems Biotechnology, Chung-Ang University)
  • 김범준 (중앙대학교 시스템생명공학과) ;
  • 김병찬 (중앙대학교 시스템생명공학과) ;
  • 이호중 (중앙대학교 시스템생명공학과) ;
  • 이상준 (중앙대학교 시스템생명공학과)
  • Received : 2021.11.08
  • Accepted : 2021.11.25
  • Published : 2021.12.28

Abstract

Single-molecular guide RNA (sgRNA) plays a role in recognizing the DNA target sequence in CRISPR technology for genome editing and gene expression control. In this study, we systematically compared the length of the target recognition sequence in sgRNAs required for genome editing using Cas9-NG (an engineered Cas9 recognizing 5'-NG as PAM sequence) and gene expression control using deactivated Cas9-NG (dCas9-NG) by targeting the gal promoter in E. coli. In the case of genome editing, the truncation of three nucleotides in the target recognition sequence (TRS) of sgRNA was allowed. In gene expression regulation, we observed that target recognition and binding were possible even if eleven nucleotides were deleted from twenty nucleotides of the TRS. When 4 or more nucleotides are truncated in the TRS of the sgRNA, it is thought that the sgRNA/Cas9-NG complex can specifically bind to the target DNA sequence, but lacks endonuclease activity to perform genome editing. Our study will be helpful in the development of artificial transcription factors and various CRISPR technologies in the field of synthetic biology.

CRISPR/Cas를 이용한 유전체 편집과 유전자 발현 조절을 위한 기술에서 sgRNA는 표적서열을 인식하는 역할을 한다. gal 프로모터를 표적서열로 하여 유전체 편집에 필요한 sgRNA의 표적인식서열의 길이와 유전자 발현 조절에 필요한 sgRNA의 표적인식서열의 길이를 Cas9-NG에서 체계적으로 비교하였다. 유전체 편집의 경우, sgRNA의 표적인식서열을 구성하는 20개의 뉴클레오티드에서 3개의 뉴클레오티드의 결손만을 허용하였다. 하지만, 유전자 발현 조절에는 표적인식서열에서 11개의 뉴클레오티드가 결손되어도 표적서열을 인식하고 결합할 수 있다는 것을 밝혔다. 따라서, sgRNA의 표적인식서열에서 4개 이상의 뉴클레오티드의 결손이 있는 경우에 sgRNA/Cas9-NG는 표적 DNA 서열에 특이적으로 결합을 하지만, 엔도뉴클레아제의 활성을 갖지 못하기 때문에 유전체 편집을 할 수 없는 것으로 판단된다. 이 결과는 인공전사인자 개발과 합성생물학 분야의 다양한 CRISPR 기술 발전에 도움을 줄 것이다.

Keywords

Acknowledgement

This study was supported by National Research Foundation of Korea (NRF-2021R1A2C1013606), and Rural Development Administration (Project No. PJ015001032021), Republic of Korea.

References

  1. Jansen R, van Embden JDA, Gaastra W, Schouls LM. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43: 1565-1575. https://doi.org/10.1046/j.1365-2958.2002.02839.x
  2. Horvath P, Barrangou R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327: 167-170. https://doi.org/10.1126/science.1179555
  3. Lee HJ, Lee SJ. 2021. Advances in accurate microbial genome-editing CRISPR technologies. J. Microbiol. Biotechnol. 31: 903-911. https://doi.org/10.4014/jmb.2106.06056
  4. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, et al. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343: 1247997. https://doi.org/10.1126/science.1247997
  5. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821. https://doi.org/10.1126/science.1225829
  6. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31: 233-239. https://doi.org/10.1038/nbt.2508
  7. Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819-823. https://doi.org/10.1126/science.1231143
  8. Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, et al. 2018. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361: 1259-1262. https://doi.org/10.1126/science.aas9129
  9. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41: 7429-7437. https://doi.org/10.1093/nar/gkt520
  10. Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. 2013. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8: 2180-2196. https://doi.org/10.1038/nprot.2013.132
  11. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152: 1173-1183. https://doi.org/10.1016/j.cell.2013.02.022
  12. Fu YF, Sander JD, Reyon D, Cascio VM, Joung JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32: 279-284. https://doi.org/10.1038/nbt.2808
  13. Lee HJ, Kim HJ, Lee SJ. 2021. Mismatch intolerance of 5'-truncated sgRNAs in CRISPR/Cas9 enables efficient microbial single-base genome editing. Int. J. Mol. Sci. 22: 6457. https://doi.org/10.3390/ijms22126457
  14. Moghadam F, LeGraw R, Velazquez JJ, Yeo NC, Xu C, Park J, et al. 2020. Synthetic immunomodulation with a CRISPR super-repressor in vivo. Nat. Cell Biol. 22: 1143-1154. https://doi.org/10.1038/s41556-020-0563-3
  15. Kim B, Kim HJ, Lee SJ. 2020. Effective blocking of microbial transcriptional initiation by dCas9-NG-mediated CRISPR interference. J. Microbiol. Biotechnol. 30: 1919-1926. https://doi.org/10.4014/jmb.2008.08058
  16. Lee HJ, Kim HJ, Lee SJ. 2020. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs. Genome Res. 30: 768-775. https://doi.org/10.1101/gr.257493.119
  17. Kim B, Kim HJ, Lee SJ. 2020. Regulation of microbial metabolic rates using CRISPR interference with expanded PAM sequences. Front. Microbiol. 11: 282. https://doi.org/10.3389/fmicb.2020.00282
  18. Khakimzhan A, Garenne D, Tickman B, Fontana J, Carothers J, Noireaux V. 2021. Complex dependence of CRISPR-Cas9 binding strength on guide RNA spacer lengths. Phys. Biol. 18: 056003. https://doi.org/10.1088/1478-3975/ac091e