DOI QR코드

DOI QR Code

Applications of Enzyme Immobilized Membranes: A Review

효소 고정화막의 응용에 대한 총설

  • Ryu, Junghyun (Life Science and Biotechnology Department (LSBT), Underwood Division (UD), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 유정현 (연세대학교 언더우드학부 생명과학공학과) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2021.12.18
  • Accepted : 2021.12.27
  • Published : 2021.12.31

Abstract

Enzymes are important class of catalyst for biotransformation. Stability and reusability of enzymes during the catalysis process is a key issue. Activity of enzyme can be enhanced by its immobilization on a suitable substrate by creation of specific microenvironment. A variety of membranes has been used as substrate due to the biocompatibility and simpler method to tune hydrophilicity/hydrophobicity property of the membrane surface. In this review, polymer membranes including cellulose, polyacrylonitrile (PAN), polydimethylsiloxane (PDMS), polyvinylidene fluoride (PVDF), polyethersulfone (PES) are introduced and discussed in detail. Biodegradation of organic contaminants by immobilized enzyme is an environmental friendly process to reduce the contamination of environment in pharmaceutical company and textile industries. The controlled hydrolysis of oil can be performed in enzyme immobilized membrane bioreactor (EMBR), resulting in reducing carbon emission and reduced environmental pollution. Bioethanol and biodiesel are considered alternative fossil fuels that can be prepared in EMBR.

생체 내 변화에서 효소는 중요한 촉매이다. 효소의 안정성과 재사용성은 촉매 과정에서 중요한 요소이다. 적합한 기질에 효소 고정화는 특정 미세환경의 조성을 통해 효소 활동성을 높인다. 다양한 종류의 분리막이 각각의 생체적합성과 막 표면의 친수성/소수성 조절 용이도에 따라 기질로 사용되었다. 본 논문에서는 셀룰로스, 폴리아크릴로니트릴(PAN), 폴리디메틸실록산(PDMS), 폴리비닐리덴플루오라이드(PVDF), 폴리에테르설폰(PES) 고분자 분리막이 소개되고 토의되었다. 고정화 효소를 이용한 유기오염물의 생물적 분해는 제약 회사 및 섬유 회사 등에서 발생하는 오염물질을 친환경적으로 감소할 수 있는 방법이다. 효소 고정화 생물반응기(EMBR)로 기름의 가수분해를 제어할 수 있고 이를 통해 탄소 배출량 감소 및 환경오염을 줄일 수 있다. EMBR로 만들 수 있는 바이오에탄올과 바이오디젤은 화석 연료의 대체제이다.

Keywords

References

  1. S. Smith, K. Goodge, M. Delaney, A. Struzyk, N. Tansey, and M. Frey, "A comprehensive review of the covalent immobilization of biomolecules onto electrospun nanofibers", Nanomaterials, 10,1 (2020).
  2. E. P. Cipolatti, M. J. A. Silva, M. Klein, V. Feddern, M. M. C. Feltes, J. V. Oliveira, J. L. Ninow, and D. De Oliveira, "Current status and trends in enzymatic nanoimmobilization", J. Mol. Catal. B Enzym., 99, 56 (2014). https://doi.org/10.1016/j.molcatb.2013.10.019
  3. A. Mehta, U. Bodh, and R. Gupta, "Fungal lipases: A review", J. Biotech Res. 8, 58 (2017).
  4. R. E. Gumba, S. Saallah, M. Misson, C. M. Ongkudon, and A. Anton, "Green biodiesel production: A review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology", Biofuel Res. J., 3, 431 (2016). https://doi.org/10.18331/BRJ2016.3.3.3
  5. H. Park, I. Park, and S. Yoo, "How to Design Membrane Chromatography for Bioseparations: A Short Review", Membr. J., 31, 145 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.2.145
  6. T. Choi and H. Park, "Membrane and Virus Filter Trends in the Processes of Biopharmaceutical Production", Membr. J., 30, 9 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.9
  7. M. Taheran, S. K. Brar, M. Verma, R. Y. Surampalli, T. C. Zhang, and J. R. Valero, "Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters", Sci. Total Environ., 547, 60 (2016). https://doi.org/10.1016/j.scitotenv.2015.12.139
  8. M. L. Verma, C. J. Barrow, and M. Puri, "Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production", Appl. Microbiol. Biotechnol., 97, 23 (2013). https://doi.org/10.1007/s00253-012-4535-9
  9. Y. Li, W. Wei, Q. Cao, and F. Feng, "New materials for immobilized lipase", J. Chin. Cereals Oils Assoc., 29, 122 (2014).
  10. K. Min, A. Yoo, and K. Youm, "Preparation and Characteristics of P(AN-co-MA) Membrane Imprinted with Lysozyme Molecules", Membr. J., 31, 219 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.3.219
  11. M. L. Verma, M. Puri, and C. J. Barrow, "Recent trends in nanomaterials immobilised enzymes for biofuel production", Crit. Rev. Biotechnol., 36, 108 (2016). https://doi.org/10.3109/07388551.2014.928811
  12. V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L. C. Du Toit, and V. M. K. Ndesendo, "A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications", J. Nanomater. 789289, (2013).
  13. W. Shuai, R. K. Das, M. Naghdi, S. K. Brar, and M. Verma, "A review on the important aspects of lipase immobilization on nanomaterials", Biotechnol. Appl. Biochem., 64, 496 (2017). https://doi.org/10.1002/bab.1515
  14. P. C. Chen, X. J. Huang, F. Huang, Y. Ou, M. R. Chen, and Z. K. Xu, "Immobilization of lipase onto cellulose ultrafine fiber membrane for oil hydrolysis in high performance bioreactor", Cellulose, 18, 1563 (2011). https://doi.org/10.1007/s10570-011-9593-0
  15. P. C. Chen, X. J. Huang, and Z. K. Xu, "Utilization of a biphasic oil/aqueous cellulose nanofiber membrane bioreactor with immobilized lipase for continuous hydrolysis of olive oil", Cellulose, 21, 407 (2014). https://doi.org/10.1007/s10570-013-0148-4
  16. P. C. Chen, X. J. Huang, and Z. K. Xu, "Kinetics-bolstered catalytic study of a high performance lipase-immobilized nanofiber membrane bioreactor", RSC Adv., 4, 6151 (2014). https://doi.org/10.1039/c3ra46779a
  17. M. Taheran, M. Naghdi, S. K. Brar, E .J. Knystautas, M. Verma, and R. Y. Surampalli, "Degradation of chlortetracycline using immobilized laccase on Polyacrylonitrile-biochar composite nanofibrous membrane", Sci. Total Environ., 605-606, 315 (2017). https://doi.org/10.1016/j.scitotenv.2017.06.185
  18. M. Taheran, M. Naghdi, S. K. Brar, E. J. Knystautas, M. Verma, and R. Y. Surampalli, "Covalent Immobilization of Laccase onto Nanofibrous Membrane for Degradation of Pharmaceutical Residues in Water", ACS Sustainable Chem. Eng., 5, 10430 (2017). https://doi.org/10.1021/acssuschemeng.7b02465
  19. B. Xie, W. Gong, H. Yu, X. Tang, Z. Yan, X. Luo, Z. Gan, T. Wang, G. Li, and H. Liang, "Immobilized micro-algae for anaerobic digestion effluent treatment in a photobioreactor-ultrafiltration system: Algal harvest and membrane fouling control", Bioresour. Technol., 268, 139 (2018). https://doi.org/10.1016/j.biortech.2018.07.110
  20. R. Xu, C. Chi, F. Li, and B. Zhang, "Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A", Bioresour. Technol., 149, 111 (2013). https://doi.org/10.1016/j.biortech.2013.09.030
  21. R. Xu, J. Cui, R. Tang, F. Li, and B. Zhang, "Removal of 2,4,6-trichlorophenol by laccase immobilized on nano-copper incorporated electrospun fibrous membrane-high efficiency, stability and reusability", Chem. Eng. J., 326, 647 (2017). https://doi.org/10.1016/j.cej.2017.05.083
  22. R. Xu, Y. Si, F. Li, and B. Zhang, "Enzymatic removal of paracetamol from aqueous phase: horseradish peroxidase immobilized on nanofibrous membranes", Environ. Sci. Pollut. Res., 22, 3838 (2015). https://doi.org/10.1007/s11356-014-3658-1
  23. R. Xu, R. Tang, Q. Zhou, F. Li, and B. Zhang, "Enhancement of catalytic activity of immobilized laccase for diclofenac biodegradation by carbon nanotubes", Chem. Eng. J., 262, 88 (2015). https://doi.org/10.1016/j.cej.2014.09.072
  24. D. Cai, S. Hu, C. Chen, Y. Wang, C. Zhang, Q. Miao, P. Qin, and T. Tan, "Immobilized ethanol fermentation coupled to pervaporation with silicalite-1/polydimethylsiloxane/polyvinylidene fluoride composite membrane", Bioresour. Technol., 220, 124 (2016). https://doi.org/10.1016/j.biortech.2016.08.036
  25. E. L. I. Santos, M. Rostro-Alanis, R. Parra-Saldivar, and A. J. Alvarez, "A novel method for bioethanol production using immobilized yeast cells in calcium-alginate films and hybrid composite pervaporation membrane", Bioresour. Technol., 247, 165 (2018). https://doi.org/10.1016/j.biortech.2017.09.091
  26. N. Elias, R. A. Wahab, L. W. Jye, N. A. Mahat, S. Chandren, and J. Jamalis, "Taguchi orthogonal design assisted immobilization of Candida rugosa lipase onto nanocellulose-silica reinforced polyethersulfone membrane: physicochemical characterization and operational stability", Cellulose, 28, 5669 (2021). https://doi.org/10.1007/s10570-021-03886-8
  27. Y. Li, H. Wang, J. Lu, A. Chu, L. Zhang, Z. Ding, S. Xu, Z. Gu, and G. Shi, "Preparation of immobilized lipase by modified polyacrylonitrile hollow membrane using nitrile-click chemistry", Bioresour. Technol., 274, 9 (2019). https://doi.org/10.1016/j.biortech.2018.11.075
  28. M. Aghababaie, M. Beheshti, A. Razmjou, and A. K. Bordbar, "Covalent immobilization of Candida rugosa lipase on a novel functionalized Fe3O4@SiO2 dip-coated nanocomposite membrane", Food Bioprod. Process., 100, 351 (2016). https://doi.org/10.1016/j.fbp.2016.07.016
  29. F. Jafarian, A. K. Bordbar, A. Razmjou, and A. Zare, "The fabrication of a high performance enzymatic hybrid membrane reactor (EHMR) containing immobilized Candida rugosa lipase (CRL) onto graphene oxide nanosheets-blended polyethersulfone membrane", J. Membr. Sci., 613, 118435 (2020). https://doi.org/10.1016/j.memsci.2020.118435
  30. Z. Zhang, S. Liu, T. Miyoshi, H. Matsuyama, and J. Ni, "Mitigated membrane fouling of anammox membrane bioreactor by microbiological immobilization", Bioresour. Technol., 201, 312 (2016). https://doi.org/10.1016/j.biortech.2015.11.037
  31. S. K. Suman, P. L. Patnam, S. Ghosh, and S. L. Jain, "Chicken Feather Derived Novel Support Material for Immobilization of Laccase and Its Application in Oxidation of Veratryl Alcohol", ACS Sustain. Chem. Eng., 7, 3464 (2019). https://doi.org/10.1021/acssuschemeng.8b05679
  32. J. Rong, T. Zhang, F. Qiu, and Y. Zhu, "Preparation of Efficient, Stable, and Reusable Laccase-Cu3(PO4)2 Hybrid Microspheres Based on Copper Foil for Decoloration of Congo Red", ACS Sustain. Chem. Eng., 5, 4468 (2017). https://doi.org/10.1021/acssuschemeng.7b00820