DOI QR코드

DOI QR Code

A Survey of Yeosu Sado Dinosaur Tracksite and Utilization of Educational Materials using 3D Photogrammetry

3D 사진측량법을 이용한 여수 사도 공룡발자국 화석산지 조사 및 교육자료 활용방안

  • Jo, Hyemin (Faculty of Earth Systems and Environmental Sciences & Korea Dinosaur Research Center, Chonnam National University) ;
  • Hong, Minsun (Faculty of Earth Systems and Environmental Sciences & Korea Dinosaur Research Center, Chonnam National University) ;
  • Son, Jongju (Faculty of Earth Systems and Environmental Sciences & Korea Dinosaur Research Center, Chonnam National University) ;
  • Lee, Hyun-Yeong (Faculty of Earth Systems and Environmental Sciences & Korea Dinosaur Research Center, Chonnam National University) ;
  • Park, Kyeong-Beom (Department of Industrial Engineering, Chonnam National University) ;
  • Jung, Jongyun (Department of Geological and Environmental Sciences, Chonnam National University) ;
  • Huh, Min (Faculty of Earth Systems and Environmental Sciences & Korea Dinosaur Research Center, Chonnam National University)
  • 조혜민 (전남대학교 지구환경과학부 & 한국공룡연구센터) ;
  • 홍민선 (전남대학교 지구환경과학부 & 한국공룡연구센터) ;
  • 손종주 (전남대학교 지구환경과학부 & 한국공룡연구센터) ;
  • 이현영 (전남대학교 지구환경과학부 & 한국공룡연구센터) ;
  • 박경범 (전남대학교 산업공학과) ;
  • 정종윤 (전남대학교 지질환경과학과 & 한국공룡연구센터) ;
  • 허민 (전남대학교 지구환경과학부 & 한국공룡연구센터)
  • Received : 2021.10.15
  • Accepted : 2021.12.09
  • Published : 2021.12.31

Abstract

The Yeosu Sado dinosaur tracksite is well known for many dinosaur tracks and research on the gregarious behavior of dinosaurs. In addition, various geological and geographical heritage sites are distributed on Sado Island. However, educational field trips for students are very limited due to accessibility according to its geological location, time constraints due to tides, and continuous weathering and damage. Therefore, this study aims to generate 3D models and images of dinosaur tracks using the photogrammetric method, which has recently been used in various fields, and then discuss the possibility of using them as paleontological research and educational contents. As a result of checking the obtained 3D images and models, it was possible to confirm the existence of footprints that were not previously discovered or could not represent details by naked eyes or photos. Even previously discovered tracks could possibly present details using 3D images that could not be expressed by photos or interpretive drawings. In addition, the 3D model of dinosaur tracks can be preserved as semi-permanent data, enabling various forms of utilization and preservation. Here we apply 3D printing and mobile augmented reality content using photogrammetric 3D models for a virtual field trip, and these models acquired by photogrammetry can be used in various educational content fields that require 3D models.

여수 사도 공룡발자국 화석지는 많은 수의 공룡발자국 화석과 함께 공룡의 집단행동에 대한 연구로 잘 알려진 지역이다. 또한 다양한 종류의 지질유산 및 지형유산이 분포하고 있어 지질관광과 지질교육의 장으로 주목받고 있다. 그러나 지리적 위치에 따른 접근성, 조차에 의한 시간적 제약, 지속적인 풍화 및 훼손에 의해 학생들의 교육을 위한 야외조사는 매우 제한적으로만 이루어지고 있다. 따라서 이번 연구는 최근 다양한 분야에서 이용되고 있는 사진측량법을 이용하여 사도의 공룡발자국 화석들의 3D 모델과 이미지를 생성한 후 이를 통해 과거에 확인하지 못한 화석에 대한 세부적인 정보를 확인함과 동시에 이를 교육자료로 활용 할 수 있는 방안에 대하여 제안하고자 한다. 획득한 3D 이미지를 통해 확인한 결과 기존에 육안이나 사진으로 확인하지 못하였던 일부 발자국 화석들의 존재를 확인할 수 있었고 기존에 발견된 화석이라도 사진이나 해석 드로잉으로 표현하지 못하였던 세부를 이미지로 나타낼 수 있었다. 또한 발자국 화석의 3D 모델은 향후 반영구적인 데이터로 보존할 수 있어 여러 형태로의 활용과 보존이 가능하다. 이번 연구에서는 사진측량법으로 얻어진 3D 모델을 활용하여 3D 프린팅 및 가상야외조사에 활용할 모바일 증강현실 콘텐츠를 구현하였으며 향후 3D 모델이 필요한 다양한 교육 콘텐츠 분야에서 사진측량법을 활용할 수 있을 것으로 보인다.

Keywords

Acknowledgement

야외 조사에 도움을 주신 여수 사도 김장수 이장님, 전남대학교 지구환경과학부 김민국 학생, 장준혁 학생, 지오컨버전스센터 차범근 연구원, 사진측량법을 통한 연구 방법에 조언을 주신 공주대학교 이찬희 교수님, 조영훈 교수님, 3D 프린팅에 도움과 조언을 주신 전남대학교 지구환경과학부 지구물질과학연구실 성동훈 교수님, 김현수 연구원, 김계홍 연구원에게 특별한 감사를 드린다. 마지막으로 본 논문을 심사해 주신 익명의 심사위원님들에게 깊은 감사를 표한다.

References

  1. 강민정 의원실, 2020, 전국 초중고교 교내 3D프린터 보유 및 유해 프린팅 소재(ABS) 사용 현황. [데이터파일]
  2. 미래창조과학부, 산업통상자원부, 2014, 3D프린팅 산업 발전전략(안). 24 p.
  3. 정보통신산업진흥원, 2019, 2018 3D프린팅 산업 실태조사. 140 p.
  4. Ahn, J., Kong, D.-Y., and Wohn, K.-Y., 2013, Visualization of 3D Scanned Model for Interpretation of Heritage - case of Dinosaur Tracks for Documentation and Interpretation. Journal of the HCL Society of Korea, 8(1), 19-28. https://doi.org/10.17210/jhsk.2013.05.8.1.19
  5. Aristovnik, A., Kerzic, D., Ravselj, D., Tomazevic, N., and Umek, L., 2020, Impacts of the COVID-19 pandemic on life of higher education students: A global perspective. Sustainability 2020, 12(20), 1-34.
  6. Barton, D.C., 2020, Impacts of the COVID-19 pandemic on field instruction and remote teaching alternatives: Results from a survey of instructors. Ecology and Evolution, 10(22), 12499-12507. https://doi.org/10.1002/ece3.6628
  7. Behrendt, M. and Franklin, T., 2014, A Review of Research on School Field Trips and Their Value in Education. International Journal of Environmental and Science Education, 9(3), 235-245.
  8. Berry, R.Q., Bull, G., Browning, C., Tomas, C.D., Starkweather, G., and Aylor, J., 2010, Use of digital fabrication to incorporate engineering design principles in elementary mathematics education. Contemporary Issues in Technology and Teacher Education, 10(2) 167-172.
  9. Choi, B.-D., Huh, M., Hwang, K.-G., Woo, Y., and Park, J.-Y., 2012, A Preliminary Study on the Candidate Sites for Geopark Around Jeonnam Area: Focusing on Dinosaur Fossil Sites. Journal of the Paleontological Society of Korea, 28(1-2), 117-136.
  10. Clary, R.M. and Wandersee, J.H., 2014, Lessons from US Fossil Parks for Effective Informal Science Education. Geoheritage, 6(4), 241-256. https://doi.org/10.1007/s12371-014-0116-x
  11. Cooke, M.L., Anderson, K.S., and Forrest, S.E., 1997, Creating accessible introductory geology field trips. Journal of Geoscience Education, 45(1), 4-9. https://doi.org/10.5408/1089-9995-45.1.4
  12. Dolphin, G., Dutchak, A., Karchewski, B., and Cooper, J., 2019, Virtual field experiences in introductory geology: Addressing a capacity problem, but finding a pedagogical one. Journal of Geoscience Education, 67(2), 114-130. https://doi.org/10.1080/10899995.2018.1547034
  13. Elkins, J.T. and Elkins, N.M., 2007, Teaching Geology in the Field: Significant Geoscience Concept Gains in Entirely Field-based Introductory Geology Courses. Journal of Geoscience Education, 55(2), 126-132. https://doi.org/10.5408/1089-9995-55.2.126
  14. Falkingham, P.L., 2012, Acquisition of high resolution three-dimensional models using free, open-source, photogrammetric software. Palaeontologia Electronica, 15(1), 15.
  15. Falkingham, P.L., Bates, K.T., Avanzini, M., Bennett, M., Bordy, E.M., Breithaupt, B.H., Castanera, D., Citton, P., Diaz-Martinez, I., Farlow, J.O., Fiorillo, A.R., Gatesy, S.M., Getty, P., Hatala, K.G., Hornung, J.J., Hyatt, J.A., Klein, H., Lallensack, J.N., Martin, A.J., Marty, D., Matthews, N.A., Meyer, C.A., Milan, J., Minter, N.J., Razzolini, N.L., Romilio, A., Salisbury, S.W., Sciscio, L., Tanaka, I., Wiseman, A.L.A., Xing, L.D., and Belvedere, M., 2018, A standard protocol for documenting modern and fossil ichnological data. Palaeontology, 61(4), 469-480. https://doi.org/10.1111/pala.12373
  16. Falkingham, P.L., Bates, K.T., Margetts, L., and Manning, P.L., 2010, Simulating sauropod manus-only trackway formation using finite-element analysis. Biology Letters, 7(1), 142-148. https://doi.org/10.1098/rsbl.2010.0403
  17. Ford, S. and Minshall, T., 2019, Invited review article: Where and how 3D printing is used in teaching and education. Additive Manufacturing, 25, 131-150. https://doi.org/10.1016/j.addma.2018.10.028
  18. Gilley, B., Atchison, C., Feig, A., and Stokes, A., 2015, Impact of inclusive field trips. Nature Geoscience, 8(8), 579-580. https://doi.org/10.1038/ngeo2500
  19. Henderson, D.M., 2006, Burly gaits: centers of mass, stability, and the trackways of sauropod dinosaurs. Journal of Vertebrate Paleontology, 26(4), 907-921. https://doi.org/10.1671/0272-4634(2006)26[907:BGCOMS]2.0.CO;2
  20. Horowitz, S.S. and Schultz, P.H., 2014, Printing space: using 3D printing of digital terrain models in geosciences education and research. Journal of Geoscience Education, 62(1), 138-145. https://doi.org/10.5408/13-031.1
  21. Huh, M., Lockley, M.G., Kim, K.S., Kim, J.Y., and Gwak, S.G., 2012, First report of Aquatilavipes from Korea: new finds from Cretaceous strata in the Yeosu Islands Archipelago. Ichnos, 19(1-2), 43-49. https://doi.org/10.1080/10420940.2011.632297
  22. Huh, M., Paik, I.S., Chun, C.H., Park, J.B., and Kim, B.S., 2001, Dinosaur tracks from Islands in Yeosu, Jeollanam-do, Korea. Journal of the Geological Society of Korea, 37(4), 653-658.
  23. Huh, M., Paik, I.S., Ko, Y.-K., Kim, K.S., Pack, K.H., Cheong, C.H., and Hwang, K.G., 2002, A Research Report on the Yeosu Dinosaur Sites, Korea. Korea Dinosaur Research Center, Chonnam National University and Yeosu City, Gwangju, Korea, 350 p.
  24. Huh, M., Paik, I.S., Lee, C.H., Hwang, K.G., Kim, B.S., Gwak, S.G., Moon, K.H., Jang, S.J., Yoon, J.H., Yoo, G.H., Kim, R.H., Kim, W.K., Kang, M.K., Yoo, J.H., and Eo, E.I., 2011, A final report on rescue excavation at the Jeju hominid and vertebrate fossil footprint site. Korea Dinosaur Research Center and Seogipo City, 140 p.
  25. Kang, S.H., Buckley, L.G., McCrea, R.T., Kim, K.-S., Lockley, M.G., Lim, J.D., Lim, H.S., and Kim, C.-B., 2021, First report of bird tracks (Ignotornis seoungjoseoi ichnosp. nov.) from the Jinju formation (Lower Cretaceous), Sacheon City, Korea. Cretaceous Research, 104899.
  26. Kim, K.-S., Lockley, M.G., Lim, J.-D., Bae, S.-M., and Romilio, A., 2020, Trackway evidence for large bipedal crocodylomorphs from the Cretaceous of Korea. Scientific Reports, 10(1), 1-13. https://doi.org/10.1038/s41598-019-56847-4
  27. Kim, K.S., 2016, New excavation method and its applications for fossil footprints. Journal of the Korean Earth Science Society, 37(3), 143-161. https://doi.org/10.5467/JKESS.2016.37.3.143
  28. Kim, K.S., Lim, J.D., Lockley, M.G., Xing, L., Kim, D.H., Pinuela, L., Romilio, A., Yoo, J.S., Kim, J.H., and Ahn, J., 2018, Smallest known raptor tracks suggest microraptorine activity in lakeshore setting. Scientific Reports, 8(1), 1-10.
  29. Kim, S.J., Cho, H.G., Jeong, G.Y., Lee, S.H., Do, J.Y., and Chang, S.J., 2004, A study on the restoration and conservation of dinosaur tracks at the Goseong Interchange area. Natural Heritage Preservation Association, 156 p.
  30. Kong, D.-Y., Lim, J.-D., Wohn, K.-Y., Ahn, J.-H., and Kim, K.-S., 2011, Application of 3D Digital Documentation to Natural Monument Fossil Site. Journal of the Korea Contents Association, 11(11), 492-502. https://doi.org/10.5392/JKCA.2011.11.11.492
  31. Kong, D.-Y., Lim, J.D., Kim, J.Y., and Kim, K.S., 2010, Application of Digital Photogrammetry to Dinosaur Tracks from the Namhae Gain-ri Tracksite. Journal of the Korean Earth Science Society, 31(2), 129-138. https://doi.org/10.5467/JKESS.2010.31.2.129
  32. Kwon, D.H., 2014, Feasibility of Developing the Natural Heritage of Geological Features and Topography in Sado Island of Yeosu. Journal of the Geomorphological Association of Korea, 21(3), 35-48. https://doi.org/10.16968/JKGA.21.3.3
  33. Lallensack, J.N., Buchwitz, M., and Romilio, A., 2020, Photogrammetry in ichnology: 3D model generation, visualisation, and data extraction. Journal of Paleontological Techniques, 1-49. https://doi.org/10.31223/X5J30D.
  34. Lee, G., Park, J.H., and Lee, C.H., 2019, Conservation Scientific Diagnosis and Evaluation of Bird Track Sites from the Haman Formation at Yongsanri in Haman, Korea. MUNHWAJAE Korean Journal of Cultural Heritage Studies, 52(3), 74-93
  35. Lockley, M.G., Huh, M., Gwak, S.G., Hwang, K.G., and Paik, I.S., 2012, Multiple tracksites with parallel trackways from the Cretaceous of the Yeosu City Area Korea: Implications for gregarious behavior in ornithopod and sauropod dinosaurs. Ichnos, 19(1-2), 105-114. https://doi.org/10.1080/10420940.2011.625793
  36. Lockley, M.G., Lim, J.D., Park, H.D., Romilio, A., Yoo, J.S., Choi, J.W., Kim, K.S., Choi, Y., Kang, S.-H., Kim, D.H., and Kim, T.H., 2020, First reports of Crocodylopodus from East Asia: implications for the paleoecology of the Lower Cretaceous. Cretaceous Research, 104441.
  37. Matthews, N.A. and Breithaupt, B.H., 2001, Close-range Photogrammetric Experiments at Dinosaur Ridge. The Mountain Geologist, 38, 147-153.
  38. Mead, C., Buxner, S., Bruce, G., Taylor, W., Semken, S., and Anbar, A.D., 2019, Immersive, interactive virtual field trips promote science learning. Journal of Geoscience Education, 67(2), 131-142. https://doi.org/10.1080/10899995.2019.1565285
  39. Orion, N. and Hofstein, A., 1994, Factors that influence learning during a scientific field trip in a natural environment. Journal of Research in Science Teaching, 31(10), 1097-1119. https://doi.org/10.1002/tea.3660311005
  40. Otero, A., Moreno, A.P., Falkingham, P.L., Cassini, G.H., Ruella, A., Militello, M., and Toledo, N., 2020, Three-dimensional image surface acquisition in vertebrate paleontology: a review of principal techniques. Asociacion Paleontologica Argentina, 20(1), 1-14.
  41. Paik, I.S., Huh, M., Park, K.H., Hwang, K.G., Kim, K.S., and Kim, H.J., 2006, Yeosu dinosaur track sites of Korea: the youngest dinosaur track records in Asia. Journal of Asian Earth Sciences, 28(4-6), 457-468. https://doi.org/10.1016/j.jseaes.2005.11.007
  42. Paik, I.S., So, Y.H., Kim, H.J., Lee, H.I., Yoon, H.I., Lim, H.S., and Huh, M., 2009, Rhythmic deposits in the Upper Cretaceous lacustrine deposits at Yeosu area, Korea: occurrences and origin. Journal of the Geological Society of Korea, 45(2), 85-105.
  43. Pantelidis, V.S., 1993, Virtual Reality in the Classroom. Educational Technology, 33(4), 23-27.
  44. Park, K.-H., Paik, I.S., and Huh, M., 2003, Age of the volcanism and deposition determined from the Cretaceous strata of the islands of Yeosu-si. The Journal of the Petrological Society of Korea, 12(2), 70-78.
  45. Romilio, A., 2020, An instructional guide to visualising dinosaur tracks. Las Vegas, Nevada, 36 p.
  46. Rotzien, J.R., Sincavage, R., Pellowski, C., Gavillot, Y., Filkorn, H., Cooper, S., Shannon, J., Yildiz, U., Sawyer, F., and Uzunlar, N., 2021, Field-Based Geoscience Education during the COVID-19 Pandemic: Planning, Execution, Outcomes, and Forecasts. GSA Today, 31(3-4), 4-10
  47. Song, K.-Y. and Kim, H.-C., 2015, Geological report of the Yeosu sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, 55 p.
  48. Sung, S. and Lee, M., 2017, A Study of Trend and Effectiveness of imprinting effect in VR, AR Educational Contents. KSDS Conference Proceeding, 208-209.
  49. Thulborn, R.A., 1990, Dinosaur Tracks. Champman and Hall, London, New York, 410 p.
  50. Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., and Reynolds, J.M., 2012, 'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314 https://doi.org/10.1016/j.geomorph.2012.08.021
  51. Wright, J., 2005, Sauropod tracks and their importance in the study of the functional morphology and paleoecology of sauropods. In Rogers, K.C. and Wilson, J.A., (eds.), The Sauropods: evolution and paleobiology. University of California Press, Ltd., London, UK, 252-284.
  52. Yoo, J.H., Lee, C.H., and Eo, E.I., 2012, Evaluation of deterioration Diagnosis and Conservation Environments of the Large and the Giant Dinosaur Footprint Fossils in Haenam Uhangri, Korea. Journal of the Geological Society of Korea, 48(4), 325-340.
  53. Yoon, H.-S., Lee, Y.-N., Jung, S.-H., Kong, D.-Y., Kim, S.-H., and Son, M., 2021, A juvenile ornithopod tracksite from the Lower Cretaceous Haman Formation, South Korea. Cretaceous Research, 125, 104877. https://doi.org/10.1016/j.cretres.2021.104877
  54. Ziegler, M.J., Perez, V.J., Pirlo, J., Narducci, R.E., Moran, S.M., Selba, M.C., Hastings, A.K., Vargas-Vergara, C., Antonenko, P.D., and MacFadden, B.J., 2020, Applications of 3D Paleontological Data at the Florida Museum of Natural History. Frontiers in Earth Science, 8, 600696. https://doi.org/10.3389/feart.2020.600696