DOI QR코드

DOI QR Code

Analysis of Changes in Paleoenvironment using Diatoms from Iselin Bank in the Ross Sea

로스해 Iselin Bank에서 규조를 이용한 고해양 환경변화 해석

  • 박영숙 (전북대학교 자연과학대학 지구환경과학과) ;
  • 김성한 (극지연구소 빙하환경연구본부) ;
  • 이재일 (극지연구소 빙하환경연구본부) ;
  • 유규철 (극지연구소 빙하환경연구본부) ;
  • 이민경 (극지연구소 빙하환경연구본부)
  • Received : 2021.10.16
  • Accepted : 2021.12.10
  • Published : 2021.12.31

Abstract

In this study, we analyzed diatoms from core RS15-GC41 collected in Iselin Bank, Ross Sea. A total of 24 genera and 35 species of diatoms are identified, and the having valve abundance of diatoms varies from 0.2 to 28.6×106/g. Four diatom assemblage zones are established by the vertical distribution of diatoms, and changed with a cycle of 100 kyrs. RS15-GC41 were deposited over the last 400 kyrs (corresponding to Marine Isotope Stages 1-11). The open-water species Fragilariopsis kerguelensis, Rhizosolenia styliformis, and Thalassionema nitzschioides abundantly occurred in interglacial periods. Whereas, Actinocyclus actinochilus abundantly dominant during the glacial periods. The distribution of these diatoms indicated, it can be seen that the sea-ice extent was larger and lasted longer during MIS 7, 9, and 11 than that of MIS 1, 3, and 5. Moreover, Paralia sulcata was abundantly predominant in MIS 7, 9, and 11; this finding suggests likely indicating that P. sulcata was transported from the coastal/inner shelf area to the study site, during accumulated in the sediments, reworked with the influx of ice-rafted debris by the currents

로스해의 Iselin Bank 인근에서 채취한 RS15-GC41코어로부터 규조를 분석한 결과 총 24속 35종의 규조를 감정하였으며, 규조 개체수 농도는 0.2-28.6×106/g 범위에 해당하였다. 규조 군집 조성에 의해 4개의 규조 군집대를 설정하였으며 규조 군집의 변화는 거의 10만년을 주기로 변화 하였다. Marine Isotope Stages 1-11 시기에 RS15-GC41이 퇴적되는 동안 간빙기(Interglacial)에는 open ocean을 지시하는 Rhizosolenia styliformis, Fragilariopsis kerguelensis와 Thalassionema nitzschioides등이 풍부하게 산출되며, 빙기(Glacial)에는 sea-ice종인 Actinocyclus actinocyclus의 산출이 풍부하게 나타난다. MIS 7, 9와 11의 간빙기 동안 MIS 1, 3과 5 시기보다 sea-ice의 분포가 더 넓고 지속 기간이 더 오래 계속되었음을 알 수 있다. Paralia sulcata는 이 시기(MIS 7, 9와 11) 동안 해류에 의한 ice-rafted debris의 유입과 함께 연안지역으로부터 재이동 되었음을 뒷받침 해 준다.

Keywords

Acknowledgement

이 연구는 한국해양과학기술원 부설 극지연구소의 "과거 온난기의 서남극 빙상 후퇴 및 해양 순환 변화 연구(PE21090)"과제와 2018년도 기본연구지원사업의 기본연구의 일환으로 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(No. 2018R1D1A1B07048767) 입니다. 논문심사과정에서 값진 조언을 해 주신 심사위원께 깊은 감사를 드립니다.

References

  1. Anderson, J. B., Conway, H., Bart, P. J., Witus, A. E., Greenwood, S. L., McKay, R. M., Hall, B. L., Ackert, R. P., Licht, K., Jakobsson, M., and Stone, J. O., 2014, Ross sea paleo-ice sheet drainage and deglacial history during and since the LGM, Quaternary Science Review, 100, 31-54. https://doi.org/10.1016/j.quascirev.2013.08.020
  2. Anderson, J. B., Simkins, L. M., Bart, P. J., De Santis, L., Halberstadt, A. R. W., Olivo, E., and Greenwood, S. L., 2018, Seismic and geomorphic records of Antarctic Ice Sheet evolution in the Ross Sea and controlling factors in its behaviour, in: Glaciated Margins: The Sedimentary and Geophysical Archive, edited by: Le Heron, D. P., Hogan, K. A., Phillips, E. R., Huuse, M., Busfield, M. E., and Graham, A. G. C., Geological Society of London Special Publication, London, UK, https://doi.org/10.1144/SP475.5,
  3. Aoki, S., Yoritaka, M., and Masuyama, A., 2003, Multidecadal warming of subsurface temperature in the Indian sector of the Southern Ocean. Journal of Geophysical Research, 108(C4), 8081, doi:10.1029/JC000307.
  4. Armand, L.K., Crosta, X., Romero, O., and Pichon, J.J., 2005, The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species. Palaeogeography Palaeoclimatology Palaeoecology, 223, 93-126. https://doi.org/10.1016/j.palaeo.2005.02.015
  5. Bak, Y.S. and Lee, Y.U., 2017, Late Quaternary Paleoclimatic change in the Ulleung Basin, East Sea, Korea. Acta Geologica Sinica, 91, 263-269. https://doi.org/10.1111/1755-6724.13076
  6. Baroni, C. and Orombelli, G., 1991, Holocene raised beaches at Terra Nova Bay, Victoria Land, Antarctica. Quaternary Research, 36, 157-177. https://doi.org/10.1016/0033-5894(91)90023-x
  7. Baroni, C. and Orombelli, G., 1994, Holocene glacier variations in the Terra Nova Bay area (Victoria Land, Antarctica). Antarctic Science, 6(4), 497-505. https://doi.org/10.1017/s0954102094000751
  8. Bentley, M.J., Fogwill, C.J., Kubik, P.W., and Sugden, D.E., 2006, Geomorphological evidence and cosmogenic 10Be/26Al exposure ages for the Last Glacial Maximum and deglaciation of the Antarctic Peninsula Ice Sheet. Geological Society of America Bulletin, 118, 1149-1159. https://doi.org/10.1130/B25735.1
  9. Berger, A. and Loutre, M.F., 2010, Modeling the 100-kyr glacial-interglacial cycles. Global and planetary change, 72(4), 275-281. https://doi.org/10.1016/j.gloplacha.2010.01.003
  10. Callahan, J.E., 1972, The structure and circulation of deep water in the Antarctic. Deep Sea Research, Oceanography Abstract 19, 563-575. https://doi.org/10.1016/0011-7471(72)90040-X
  11. Crosta, X., Romero, O., Armand, L.K., and Pichon, J.-J., 2005, The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open-ocean related species. Palaeogeography Palaeoclimatology Palaeoecology, 223, 66-92. https://doi.org/10.1016/j.palaeo.2005.03.028
  12. Cody, R.D., Levy, R.H., Harwood, D.M., and Sadler, P.M., 2008, Thinking outside the zone: high-resolution quantitative biochronology for the Antarctic Neogene. Palaeogeography Palaeoclimatology Palaeoecology, 260, 92-121. https://doi.org/10.1016/j.palaeo.2007.08.020
  13. Denton, G.H., Bockheim, J.G., Wilson, S.C., and Stuiver, M., 1989, Late Wisconsin and Early Holocene glacial history, Inner Ross Embayment, Antarctica. Quaternary Research, 31, 151-82. https://doi.org/10.1016/0033-5894(89)90004-5
  14. Ding, G., Novak, J.M., Herbert, S., and Xing, B., 2002, Long-term tillage effects on soil metolachlor sorption and desorption behavior. Chemosphere, 48(9), 897-904. https://doi.org/10.1016/S0045-6535(02)00188-1
  15. Domack, E.W., Leventer, A., Root, S., Ring, J., Williams, E., Carlson, D., Hirshorn, E., Wright, W., Gilbert, R., and Burr, G., 2003, Marine sedimentary record of natural environmental variability and recent warming in the Antarctic Peninsula. In: Domack, E., Leventer, A., Burnett, A., Bindschadler, R., Convey, P., Kirby, M. (Eds.), Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives. American Geophysical Union, Washington, D.C., 205, 211-224.
  16. Dunbar, R.B., Anderson, J.B., Domack, E.W., and Jacobs, S.S., 1985, Oceanographic influences on sedimentation along the Antarctic continental shelf. Antarctic Research Searies, 43, 291-312. https://doi.org/10.1029/AR043p0291
  17. Gebuhr, C., Wiltshire, K.H., Aberle, N., van Beusekom, J.E.E., and Gerdts, G., 2009, Influence of nutrients, temperature, light and salinity on the occurrence of Paralis sulcata at Helgoland Roads, North Sea. Aquatic Biology, 7, 185-197. https://doi.org/10.3354/ab00191
  18. Golledge, N. R., Menviel, L., Carter, L., Fogwill, C. J., England, M.H., Cortese, G., and Levy, R.H., 2014, Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning, Nature Communications, 5, 5107. https://doi.org/10.1038/ncomms6107
  19. Ha, S.-Y., Ahn, I.-Y., Moon, H.-W., Choi, B., and Shin, K.-H., 2019, Tight trophic association between benthic diatom blooms and shallow-water megabenthic communities in a rapidly deglaciated Antarctic fjord. Estuarine, Coastal and Shelf Science, 218, 258-267. https://doi.org/10.1016/j.ecss.2018.12.020
  20. Halberstadt, A. R. W., Simkins, L. M., Greenwood, S. L., and Anderson, J. B., 2016, Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica, The Cryosphere, 10, 1003.1020, https://doi.org/10.5194/tc-10-1003-2016.
  21. Hays, J.D., Imbrie, J., and Shackleton, N.J., 1976, Variations in the Earth's Orbit: Pacemaker of the Ice Ages. Science, 194(4270), 121-1132.
  22. Jacobs, S.S., Giulivi, C.F., and Mele, P.A., 2002, Freshening of the Ross Sea during the late 20th century. Science, 297(5580), 386-389. https://doi.org/10.1126/science.1069574
  23. Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G, Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnoloa, J.M., Chappellaz, J., Fischer, H., Gallet, J.C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J.P., Stenni, B., Stocker, T.F., Tison, J.L., Werner, M., and Wolff, E.W., 2007, Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317, 793-796. https://doi.org/10.1126/science.1141038
  24. Kim, S.H., Lee, J.I., Mckay, R.M., Yoo, K-C., Bak, Y-S., Lee, M.K., Roh, Y.H., Yoon, H.I., Moon, H.S., and Hyun, C-U., 2020, Late pleistocene paleoceanographic changes in the Ross Sea - Glacial-interglacial variations in paleoproductivity, nutrient utilization, and deep-water formation. Quaternary Sciences Reviews, 239, 106356. https://doi.org/10.1016/j.quascirev.2020.106356
  25. Leventer, A., Domack, E.W., Ishman, S.E., Brachfeld, S., McClennen, C.E., and Manley, P.L., 1996, Productivity cycles of 200-300 years in the Antarctic Peninsula region: understanding likages among the sun, atmosphere, oceans, sea ice, and biota. Geological Society of America Bulletin, 108, 1626-1644. https://doi.org/10.1130/0016-7606(1996)108<1626:PCOYIT>2.3.CO;2
  26. Licht, K.J., Jennings, A.E., Andrews, J.T., and Williams, K.M., 1996, Chronology of late Wisconsin ice retreat from the western Ross Sea, Antarctica. Geology, 24(3), 223-226. https://doi.org/10.1130/0091-7613(1996)024<0223:COLWIR>2.3.CO;2
  27. Lisiecki, L.E. and Raymo, M.E., 2005, A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071.
  28. Lowry, D. P., Golledge, N. R., Bertler, N. A. N., Jones, R. S., and McKay, R., 2019, Deglacial grounding-line retreat in the Ross Embayment, Antarctica, controlled by ocean and atmosphere forcing, Science Advances, 5(8), eavv8754. https://hdl.handle.net/10.1126/sciadv.aav8754
  29. McQuoid, M.R. and Nordberg, K., 2003, The diatom Paralia sulcata as an environmental indicator species in coastal sediments. Estuarine, Coastal and Shelf Science. 56, 339.354. https://doi.org/10.1016/S0272-7714(02)00187-7
  30. Melis, R., Capotondi, L., Torricella, F., Ferretti, P., Geniram, A., Hong, J.K., Kuhn, G., Khim, B-K., Kim, S., Malinverno, E., Yoo, K.C., and Colizza, E., 2021, Last Glacial Maximum to Holocene paleoceanography of the northwestern Ross Sea inferred from sediment coregeochemistry and micropaleontology at Hallett Ridge. Journal of Micropalaeontology, 40, 15-35. https://doi.org/10.5194/jm-40-15-2021
  31. Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., Krissek, L., Niessen, F., Pompilio, M., Wilson, T., Carter, L., DeConto, R., Huybers, P., McKay, R., Pollard, D., Ross, J., Winter, D., Barrett, P., Browne, G., Cody, R., Cowan, E., Crampton, J., Dunbar, G., Dunbar, N., Florindo, F., Gebhardt, C., Graham, I., Hannah, M., Hansaraj, D., Harwood, D., Helling, D., Henrys, S., Hinnov, L., Kuhn, G., Kyle, P., L?aufer, A., Maffioli, P., Magens, D., Mandernack, K., McIntosh, W., Millan, C., Morin, R., Ohneiser, C., Paulsen, T., Persico, D., Raine, I., Reed, J., Riesselman, C., Sagnotti, L., Schmitt, D., Sjunneskog, C., Strong, P., Taviani, M., Vogel, S., Wilch, T., and Williams, T., 2009, Obliquity-paced pliocene West Antarctic ice sheet oscillations. Nature 458, 322-328. https://doi.org/10.1038/nature07867.
  32. Orsi, A., Johnson, G., and Bullister, J., 1999, Circulation, mixing, and production of Antarctic Bottom Water. Progress in Oceanography, 43(1), 55-109. https://doi.org/10.1016/S0079-6611(99)00004-X
  33. Orsi, A.H. and Wiederwohl, C.L., 2009, A recount of Ross Sea waters. Deep-Sea Research II, 56, 778-795. https://doi.org/10.1016/j.dsr2.2008.10.033
  34. Pudsey, C.J. and Evans, J., 2001, First survey of Antarctic sub-ice shelf sediments reveals mid-Holocene ice shelf retreat. Geology, 29(9), 787-790. https://doi.org/10.1130/0091-7613(2001)029<0787:fsoasi>2.0.co;2
  35. Scherer, R.P., 1994, A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. Journal of Paleolimnology, 12, 171-179. https://doi.org/10.1007/BF00678093
  36. Simkins, L. M., Anderson, J. B., Greenwood, S. L., Gonnermann, H. M., Prothro, L. O., Halberstadt, A. R. W., Stearns, L. A., Pollard, D., and DeConto, R. M., 2017, Anatomy of a meltwater drainage system beneath the ancestral East Antarctic ice sheet, Nature Geoscience, 10, 691-697, https://doi.org/10.1038/ngeo3012.
  37. Sjunneskog C.M. and Scherer R.P., 2005, Mixed Diatom Assemblages in Ross Sea (Antarctica) Glacigenic Facies. Palaeogeography Palaeoclimate Palaeoecology, 218, 287-300. https://doi.org/10.1016/j.palaeo.2004.12.019
  38. Sjunneskog, C. and Taylor, F., 2002, Postglacial marine diatom record of the palmer deep, Antarctic peninsula (ODP leg 178, site 1098) 1. Total diatom abundance. Paleoceanography 17.
  39. Sverdrup, H., 1940, Hydrology, section 2, discussion. Reports of the B.A.N.Z. In: Antarctic Research Expedition 1921-1931, 3, 88-126.
  40. Thomas, R.H. and Bentley, C.R., 1978, A model for Holocene retreat of the West Antarctic Ice Sheet. Quaternary Research, 10, 150-170. https://doi.org/10.1016/0033-5894(78)90098-4