DOI QR코드

DOI QR Code

The Effects of Egocentric Distance and Screen Size on Virtual Presence: Implications for the Design of Virtual Reality Environments in Large- Screen Displays

  • 투고 : 2021.02.06
  • 심사 : 2021.04.12
  • 발행 : 2021.04.30

초록

This study examined the effects of egocentric distance and screen size on learners' perceived virtual presence in a virtual reality environment with a large-screen display. Sixty-four undergraduate students participated in the study, which used a 3×2 randomized-block factorial design with repeated measures. Two independent variables were included: 1) egocentric distance, or the physical distance between the viewer's position and a screen display, and 2) screen size, or different screen heights with fixed width. Learners' perceived virtual presence, comprising involvement, spatial presence, and realness, was the dependent variable. Results showed that egocentric distance had significant effects on virtual presence, while screen size had none. A detailed discussion and implications are provided.

키워드

과제정보

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2018S1A5B8070203)

참고문헌

  1. Alexandrova, I. V., Teneva, P. T., De La Rosa, S., Kloos, U., Bulthoff, H. H., & Mohler, B. J. (2010, July). Egocentric distance judgments in a large screen display immersive virtual environment. In Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization (pp. 57-60).
  2. Bowman, D. A., & McMahan, R. P. (2007). Virtual reality: How much immersion is enough?. Computer, 40(7), 36-43. https://doi.org/10.1109/MC.2007.257
  3. Bruder, G., Argelaguet, F., Olivier, A. H., & Lecuyer, A. (2016). Cave size matters: Effects of screen distance and parallax on distance estimation in large immersive display setups. Presence: Teleoperators and Virtual Environments, 25(1), 1-16. https://doi.org/10.1162/PRES_a_00241
  4. Chen, X., Chen, Z., Li, Y., He, T., Hou, J., Liu, S., & He, Y. (2019). ImmerTai: Immersive motion learning in VR environments. Journal of Visual Communication and Image Representation, 58, 416-427. https://doi.org/10.1016/j.jvcir.2018.11.039
  5. de Back, T. T., Tinga, A. M., Nguyen, P., & Louwerse, M. M. (2020). Benefits of immersive collaborative learning in CAVE-based virtual reality. International Journal of Educational Technology in Higher Education, 17(1), 1-18. https://doi.org/10.1186/s41239-019-0174-x
  6. Dulina, L., & Bartanusova, M. (2015). CAVE design using in digital factory. Procedia Engineering, 100, 291-298. https://doi.org/10.1016/j.proeng.2015.01.370
  7. Fernandes, A. S., & Feiner, S. K. (2016, March). Combating VR sickness through subtle dynamic field-of-view modification. In 2016 IEEE symposium on 3D user interfaces (3DUI) (pp. 201-210). IEEE.
  8. Han, I. (2020). Immersive virtual field trips in education: A mixed-methods study on elementary students' presence and perceived learning. British Journal of Educational Technology, 51(2), 420-435. https://doi.org/10.1111/bjet.12842
  9. Han, I., & Black, J. B. (2011). Incorporating haptic feedback in simulation for learning physics. Computers & Education, 57(4), 2281-2290. https://doi.org/10.1016/j.compedu.2011.06.012
  10. Hou, J., Nam, Y., Peng, W., & Lee, K. M. (2012). Effects of screen size, viewing angle, and players' immersion tendencies on game experience. Computers in Human Behavior, 28(2), 617-623. https://doi.org/10.1016/j.chb.2011.11.007
  11. Howard, M. C. (2018). Virtual reality interventions for personal development: A meta-analysis of hardware and software. Human-Computer Interaction, 34(3), 1-35. https://doi.org/10.1080/10447318.2017.1306940
  12. Howard, M. C., & Gutworth, M. B. (2020). A meta-analysis of virtual reality training programs for social skill development. Computers & Education, 144, 103707. https://doi.org/10.1016/j.compedu.2019.103707
  13. Huang, H. M., Rauch, U., & Liaw, S. S. (2010). Investigating learners' attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers & Education, 55(3), 1171-1182. https://doi.org/10.1016/j.compedu.2010.05.014
  14. Interrante, V., Ries, B., Lindquist, J., Kaeding, M., & Anderson, L. (2008). Elucidating factors that can facilitate veridical spatial perception in immersive virtual environments. Presence: Teleoperators and Virtual Environments, 17(2), 176-198. https://doi.org/10.1162/pres.17.2.176
  15. Johnson, L., Becker, S. A., Cummins, M., Estrada, V., Freeman, A., & Hall, C. (2016). NMC horizon report: 2016 higher education edition (pp. 1-50). The New Media Consortium.
  16. Kennedy, R. S., Stanney, K. M., & Dunlap, W. P. (2000). Duration and exposure to virtual environments: Sickness curves during and across sessions. Presence: Teleoperators & Virtual Environments, 9(5), 463-472. https://doi.org/10.1162/105474600566952
  17. Laha, B., Bowman, D. A., & Socha, J. J. (2014). Effects of VR system fidelity on analyzing isosurface visualization of volume datasets. IEEE Transactions on Visualization and Computer Graphics, 20(4), 513-522. https://doi.org/10.1109/TVCG.2014.20
  18. Laha, B., Sensharma, K., Schiffbauer, J. D., & Bowman, D. A. (2012). Effects of immersion on visual analysis of volume data. IEEE Transactions on Visualization and Computer Graphics, 18(4), 597-606. https://doi.org/10.1109/TVCG.2012.42
  19. Leyrer, M., Linkenauger, S. A., Bulthoff, H. H., Kloos, U., & Mohler, B. (2011, August). The influence of eye height and avatars on egocentric distance estimates in immersive virtual environments. In Proceedings of the ACM SIGGRAPH symposium on applied perception in graphics and visualization (pp. 67-74).
  20. Lin, J. J. W., Duh, H. B., Abi-Rached, H., Parker, D. E., & Iii, T. A. F. (2002). Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. In Proceedings of the IEEE Virtual Reality Conference 2002 (p. 164). IEEE Computer Society.
  21. Lin, C. J., & Woldegiorgis, B. H. (2017). Egocentric distance perception and performance of direct pointing in stereoscopic displays. Applied Ergonomics, 64, 66-74. https://doi.org/10.1016/j.apergo.2017.05.007
  22. Lindgren, R., Moshell, J. M., & Hughes, C. E. (2014). Virtual environments as a tool for conceptual learning. In Handbook of Virtual Environments (pp. 1039-1051). CRC Press.
  23. Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, W., & Davis, T. J. (2014). Effectiveness of virtual reality-based instruction on students' learning outcomes in K-12 and higher education: A meta-analysis. Computers & Education, 70, 29-40. https://doi.org/10.1016/j.compedu.2013.07.033
  24. Mestre, D. R. (2017). CAVE versus head-mounted displays: Ongoing thoughts. Electronic Imaging, 2017(3), 31-35. https://doi.org/10.2352/ISSN.2470-1173.2017.3.ERVR-094
  25. Muhanna, M. A. (2015). Virtual reality and the CAVE: Taxonomy, interaction challenges and research directions. Journal of King Saud University - Computer and Information Sciences, 27(3), 344-361. https://doi.org/10.1016/j.jksuci.2014.03.023
  26. Piryankova, I. V., De La Rosa, S., Kloos, U., Bulthoff, H. H., & Mohler, B. J. (2013). Egocentric distance perception in large screen immersive displays. Displays, 34(2), 153-164. https://doi.org/10.1016/j.displa.2013.01.001
  27. Porcino, T. M., Clua, E., Trevisan, D., Vasconcelos, C. N., & Valente, L. (2017, April). Minimizing cyber sickness in head mounted display systems: Design guidelines and applications. In 2017 IEEE 5th international conference on serious games and applications for health (SEGAH) (pp. 1-6). IEEE.
  28. Schubert, T., Friedmann, F., & Regenbrecht, H. (2001). The experience of presence: Factor analytic insights. Presence: Teleoperators & Virtual Environments, 10(3), 266-281. https://doi.org/10.1162/105474601300343603
  29. Schuemie, M. J., Van Der Straaten, P., Krijn, M., & Van Der Mast, C. A. (2001). Research on presence in virtual reality: A survey. CyberPsychology & Behavior, 4(2), 183-201. https://doi.org/10.1089/109493101300117884
  30. Selzer, M. N., Gazcon, N. F., & Larrea, M. L. (2019). Effects of virtual presence and learning outcome using low-end virtual reality systems. Displays, 59, 9-15. https://doi.org/10.1016/j.displa.2019.04.002
  31. Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence, 7(3), 225-240. https://doi.org/10.1162/105474698565686