DOI QR코드

DOI QR Code

Variations of Yield Components and Anthocyanin Contents in Soritae and Yakkong Black Soybean Landraces Collected from Different Areas

  • Choi, Yu-Mi (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Yoon, Hyemyeong (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Shin, Myoung-Jae (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Yoonjung (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Sukyeung (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Han, Wang Xiao (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Desta, Kebede Taye (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2021.07.23
  • Accepted : 2021.09.01
  • Published : 2021.12.01

Abstract

In this study, we cultivated 115 Soritae and 86 Yakkong black soybean landraces collected from ten different locations in Korea. Then, the variations of three yield components (one-hundred seeds weight (HSW), number of seeds per pod (SPP), and yield per plant (YPP)) and three anthocyanins (cyanidin-3-O-glucoside (C-3-O-G), delphinidin-3-O-glucoside (D-3-O-G) and petunidin-3-O-glucoside (Pt-3-O-G)) were investigated according to landrace type and collection area. Both yield components and anthocyanin contents significantly varied between the soybeans demonstrating genetic differences. Soritae landraces had the highest average HSW and TAC, whereas Yakkong landraces displayed the highest average SPP irrespective of collection area. Relatively, Yakkong landraces from Gyeongsangnam-do (1697.29 mg/100 g) and Soritae landraces from Gyeonggi-do (2340.94 mg/100 g) had the highest average TAC. Principal component analysis clearly separated Soritae and Yakkong landraces. Moreover, TAC and C-3-O-G showed positive and significant associations in both Soritae (r = 0.972) and Yakkong (r = 0.885) landraces, while yield components showed negative or weak correlations with each other. Overall, ten landraces were identified as important resources owing to their high yield (>150 g/plant) and high level of TAC (>2300 mg/100g). This study could lay foundations to molecular level investigations and reinforce the use of Yakkong and Soritae landraces during cultivar development.

Keywords

Acknowledgement

This work was supported by the Research Program for Agricultural Science & Technology Development (Project No. PJ014168) of the National Institute of Agricultural Sciences, Rural Development Administration (Jeonju, Republic of Korea).

References

  1. Battisti, R., P.C. Sentelhas, K.J. Boote, G.M. Gil, J.R.B. Farias and C.J. Basso. 2017. Assessment of soybean yield with altered water-related genetic improvement traits under climate change in Southern Brazil. Eur. J. Agron. 83:1-14. https://doi.org/10.1016/j.eja.2016.11.004
  2. Bianchi, J.S., A. Quijano, C.O. Gosparini and E.N. Morandi. 2020. Changes in leaflet shape and seeds per pod modify crop growth parameters, canopy light environment, and yield components in soybean. Crop. J. 8:351-364. https://doi.org/10.1016/j.cj.2019.09.011
  3. Carciochi, W.D., R. Schwalbert, F.H. Andrade, G.M. Corassa, P. Carter, A.P. Gaspar, J. Schmidt and I.A. Ciampitti. 2019. Soybean seed yield response to plant density by yield environment in North America. Agronomy J. 111:1923-1932. https://doi.org/10.2134/agronj2018.10.0635
  4. Cho, K.M., T.J. Ha, Y.B. Lee, W.D. Seo, J.Y. Kim, H.W. Ryu, S.H. Jeong, Y.M. Kang and J.H. Lee. 2013. Soluble phenolics and antioxidant properties of soybean (Glycine max L.) cultivars with varying seed coat colours. J. Funct. Foods 5: 1065-1076. https://doi.org/10.1016/j.jff.2013.03.002
  5. Choi, D.H., H.Y. Ban, B.S. Seo, K.J. Lee and B.W. Lee. 2016. Phenology and seed yield performance of determinate soybean cultivars grown at elevated temperatures in α temperate region. PLoS One 11:1-18.
  6. Choi, Y.M., H. Yoon, M.J. Shin, Y. Lee, S. Lee, O.S. Hur, N.Y. Ro, H.C. Ko, J. Yi, S.H. Lee, H.W. Kim, Y.J. Hwang, M.C. Lee and K.T. Desta. 2021. Differences in cotyledon color and harvest period affect the contents of major isoflavones and anthocyanins in black soybeans. Plant Breed. Biotechnol. 9:65-76. https://doi.org/10.9787/PBB.2021.9.1.65
  7. Choung, M.G., I.Y. Baek., S.T. Kang, W.Y. Han, D.C. Shin, H.P. Moon and K.H. Kang. 2001. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.). J. Agric. Food Chem. 49:5848-5851. https://doi.org/10.1021/jf010550w
  8. Food and Agriculture Organization of the United Nation (FAO). 2019. Soybeans. [Accessed June 01, 2021].
  9. Ganesan, K. and B. Xu. 2017. A critical review on polyphenols and health benefits of black soybeans. Nutrients 9:1-17. https://doi.org/10.3390/nu9010001
  10. Graef, G., B.J. Lavallee, P. Tenopir, M. Tat, B. Schweiger, A.J. Kinney, J.H., Van Gerpen and T.E. Clemente. 2009. A higholeic-acid and low-palmitic-acid soybean: Agronomic performance and evaluation as a feedstock for biodiesel. Plant Biotechnol. J. 7:411-421. https://doi.org/10.1111/j.1467-7652.2009.00408.x
  11. Ha, T.J., J.H. Lee, S.O. Shin, S.H. Shin, S.I. Han, H.T. Kim, J.M. Ko, M.H. Lee and K.Y. Park. 2009. Changes in anthocyanin and isoflavone concentrations in black seed-coated soybean at different planting locations. J. Crop Sci. Biotechnol. 12:79-86. https://doi.org/10.1007/s12892-009-0093-9
  12. Hong, S., S. Lee, Y. Kim, Y. Hwang, K. Yoon, S. Lee, L. Song and M. Choung. 2010. Variation of anthocyanin, and isoflavone contents in Korean black soybeans grown at different latitudinal locations. Korean J. Environ. Agric. 29:129-137 (in Korean). https://doi.org/10.5338/KJEA.2010.29.2.129
  13. Hwang, J.S., J.Y. Kim, D.I. Sung, Y.S. Yi and H.B. Kim. 2012. Fermentation of black-soybean chungkookjang using bacillus licheniformis B1. Korean J. Microbiol. 48:216-219. https://doi.org/10.7845/KJM.2012.033
  14. Im, C.M., S.H. Kwon, M.S. Bae, K.O. Jung, S.H. Moon and K.Y. Park. 2006. Characteristics and increased antimutagenic effect of black soybean (Var. Seoritae) Chungkukjang. Cancer Prev. Res. 11:218-224 (in Korean).
  15. Kang, H., B. Park, S. Park, E. Kim, E. Park and H.R. Ko. 2021. Effect of the density of Heterodera glycines on soybean yield. Korean J. Plant Res. 34(4):257-262 (in Korean). https://doi.org/10.7732/KJPR.2021.34.4.257
  16. Kim, E.H., H.M. Ro, S.L., Kim, H.S. Kim and I.M. Chung. 2012. Analysis of isoflavone, phenolic, soyasapogenol, and tocopherol compounds in soybean [Glycine max (L.) Merrill] germplasms of different seed weights and origins. J. Agric. Food Chem. 60:6045-6055. https://doi.org/10.1021/jf300463f
  17. Kim, H., G.H. Jung, J.H. Lee, B.W. Lee, Y.Y. Lee, S.K. Kim and B.K. Lee. 2018. Quality and physicochemical characteristics of small black soybean cultivar cultivated in the Northcentral region. Korean J. Food Nutr. 31:792-801 (in Korean). https://doi.org/10.9799/KSFAN.2018.31.6.792
  18. Kim, J.K., E.H. Kim, O.K. Lee, S.Y. Park, B. Lee, S.H. Kim, I. Pak and I.M. Chung. 2013. Variation and correlation analysis of phenolic compounds in mungbean (Vigna radiata L.) varieties. Food Chem. 141:2988-2997. https://doi.org/10.1016/j.foodchem.2013.05.060
  19. Kim, S.L., H.B. Kim, H.Y. Chi, N.K. Park, J.R. Son, H.T. Yun and S.J. Kim. 2005. Variation of Anthocyanins and isoflavones between yellow-cotyledon and greed-cotyledon seeds in black soybeans. Food Sci. Biotechnol. 14:778-782.
  20. Koh, K., J.E. Youn and H.S. Kim. 2014. Identification of anthocyanins in black soybean (Glycine max (L.) Merr.) varieties. J. Food Sci. Technol. 51:377-381. https://doi.org/10.1007/s13197-011-0493-y
  21. Kwon, B.S., S. Choi, J.S. Shin, D.Y. Shin and K.H. Hyun. 2002. Agronomic characters and their correlation coefficient on black seeded soybeans collected in Chonnam Province. Korean J. Plant Res. 5(2):118-123 (in Korean).
  22. Lee, J., Y.S. Hwang, S.T. Kim, S.W.B. Yoon, W.Y. Han, I.K. Kang and M.G. Choung. 2017. Seed coat color and seed weight contribute differential responses of targeted metabolites in soybean seeds. Food Chem. 214:248-258. https://doi.org/10.1016/j.foodchem.2016.07.066
  23. Lee, K.J., J.R. Lee, K.H. Ma, Y.H. Cho, G.A. Lee and J.W. Chung. 2016. Anthocyanin and anthocyanin and isoflavone contents in Korean Black Soybean Landraces and their antioxidant activities. Plant Breed. Biotechnol. 4:441-452. https://doi.org/10.9787/PBB.2016.4.4.441
  24. Lee, L.S., E.J. Choi, C.H. Kim, Y.B. Kim, J.S. Kum and J.D. Park. 2014. Quality characteristics and antioxidant properties of black and yellow soybeans. Korean J. Food Sci. Technol. 46:757-761. https://doi.org/10.9721/KJFST.2014.46.6.757
  25. Li, M.W., D. Xin, Y. Gao, K.P. Li, K. Fan, N.B Munoz, W.S. Yung and H.M. Lam. 2017. Using genomic information to improve soybean adaptability to climate change. J. Exp. Bot. 68:1823-1834. https://doi.org/10.1093/jxb/erw348
  26. Li, X., Y. Xu and I. Tsuji. 2013. Soybean and prostate cancer: In Hany A. and El-Shemy (eds.), Soybean-Bio-active Compounds, IntechOpen, London, UK. pp. 265-285.
  27. Pandey, J.P. and J.H. Torrie. 1973. Path coefficient analysis of seed yield components in soybeans (Glycine max (L.) Merr.). Crop Sci. 13:505-507. https://doi.org/10.2135/cropsci1973.0011183X001300050004x
  28. Seo, M.S., C. Cho, M.S. Choi, J.B. Chun, M. Jin and D.Y. Kim. 2020. Status of molecular biotechnology research based on tissue culture of soybean. Korean J. Plant Res. 33(5):536-549 (in Korean). https://doi.org/10.7732/KJPR.2020.33.5.536
  29. Sobko, O., A. Stahl, V. Hahn, S. Zikeli, W. Claupein and S. Gruber. 2020. Environmental effects on soybean (Glycine max (L.) Merr) production in central and South Germany. Agronomy 10:1847. https://doi.org/10.3390/agronomy10121847
  30. Song, J., Z. Liu, H. Hong, Y. Ma, L. Tian, X. Li, Y.H. Li, R. Guan, Y. Guo and L.J. Qiu. 2016. Identification and validation of loci governing seed coat color by combining association mapping and bulk segregation analysis in soybean. PLoS One 11:1-19.
  31. Wang, X., Y. Li, H. Zhang, G. Sun, W. Zhang and L. Qiu, L. 2015. Evolution and association analysis of GmCYP78A10 gene with seed size/weight and pod number in soybean. Mol. Biol. Rep. 42:489-496. https://doi.org/10.1007/s11033-014-3792-3
  32. Wu, H.J., J.C. Deng, C.Q. Yang, J. Zhang, Q. Zhang, X.C. Wang, F. Yang, W.Y. Yang and J. Liu. 2017. Metabolite profiling of isoflavones and anthocyanins in black soybean [Glycine max (L.) Merr.] seeds by HPLC-MS and geographical differentiation analysis in Southwest China. Anal. Methods 9:792-802. https://doi.org/10.1039/C6AY02970A
  33. Yamashita, Y., H. Sakakibara, T. Toda and H. Ashida. 2020. Insights into the potential benefits of black soybean (Glycine max L.) polyphenols in lifestyle diseases. Food Funct. 11: 7321-7339. https://doi.org/10.1039/D0FO01092H
  34. Yi, E., Y. Lee, H. Kim and Y. Kim. 2008. Variation of anthocyanin contents according to collection site and maturity in black soybean. Korean J. Crop. Sci. 53:376-381.
  35. Yi, E., Y. Yi, S.T. Yoon and H.G. Lee. 2009. Variation in antioxidant components of black soybean as affected by variety and cultivation region. Korean J. Crop. Sci. 54:80-87.
  36. Zhou, R., W. Cai and B. Xu. 2017. Phytochemical profiles of black and yellow soybeans as affected by roasting. Intl. J. Food Prop. 20:3179-3190. https://doi.org/10.1080/10942912.2017.1280678