DOI QR코드

DOI QR Code

β-Carotene, Cucumisin Content and Fruit Morphology of Melon (Cucumis melo L.) Germplasm Collections

  • Kim, Yeong-Jee (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA) ;
  • Hwang, Ae-Jin (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA) ;
  • Noh, Jae-Jong (Jeonbuk Agricultural Research and Extension Services) ;
  • Wang, Xiaohan (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA) ;
  • Lee, Jae-Eun (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA) ;
  • Yoo, Eunae (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA) ;
  • Lee, Sookyeong (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA) ;
  • Hwang, Sojeong (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Myung-Kon (Department of Food Science and Technology, Jeonbuk National University) ;
  • Noh, Hyungjun (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
  • Received : 2021.09.27
  • Accepted : 2021.11.15
  • Published : 2021.12.01

Abstract

Melon fruits are a year-old plant in the family Cucurbitae and are the most cultivated fruit in tropical countries. Melon flesh is an important source of anti-cancer, antioxidant effects, attracting attention as a functional food. We investigated the morphological properties, β-carotene content, and cucumisin activity of seeds of 58 melon genetic resources. Melon resources have shown various morphological properties. Melons grouped by morphological properties were the five groups. β-carotene content varied between 82.34 mg/kg, 86.75 mg/kg, 25.56 mg/kg, 86.25 mg/kg, and 54.65 mg/kg. Between β-carotene, cucumisin activity and other quantitative fruit morphological properties, the color of the pulp and the firmness of the pulp had a significant amount of correlation between the β-carotene content. However, cucumisin activity and β-carotene content had significant negative correlation, and the color of the fruit and shape of the fruit had significant negative correlation with β-carotene content and activity of cucumisin. Our study vindicated that high diversity in melon morphological characters of genetic sources that provide beneficial baseline data for the future and in the activity of β-carotene and cucumisin, and these results could predict indicators of β-carotene content by the length of leaf, the width of fruit, the length of joint, and the length of seed, and collectively the morphological properties of melons could help predict indicators of β-carotene content and help develop functional sarcoma and farmhouse cultivation.

Keywords

Acknowledgement

This study was carried out with the support of the "Research Program for Agricultural Science and Technology Development (Project No. PJ014213012020), National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea.

References

  1. Ahmad, T., M. Cawood, Q. Iqbal, A. Arino, A. Batool, R.M. Sabir Tariq, M. Azam and S. Akhtar. 2019. Phytochemicals in daucus carota and their health benefits - review article. Foods 8(9):424. https://doi.org/10.3390/foods8090424
  2. Asif-Ullah, M., K.S. Kim and Y.G. Yu. 2006. Purification and characterization of a serine protease from Cucumis trigonus Roxburghi. Phytochemistry 67:870-875. https://doi.org/10.1016/j.phytochem.2006.02.020
  3. Awika, J.M., L.W. Rooney, X. Wu, R.L. Prior and L. Cisneros-Zevallos. 2003. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agric. Food Chem. 51(23):6657-6662. https://doi.org/10.1021/jf034790i
  4. Butler, N. and P. Ghugre. 2020. Effect of beta carotene on the ionisable iron content of wheat. J. Nutr. Food Sci. 8(1): 88-96.
  5. Chikh, R.H., R.T. Gonzalez, Oumouloud and A.M. Alvarez. 2010. Screening and morphological characterization of melons for resistance to Fusarium oxysporum f.sp melonis race 1.2. Hort Science 45(7):1021-1025.
  6. Chikh-Rouhou, H., I. Tlili, R. llahy, T.R'. Him and R. Sta-Baba. 2019. Fruit quality assessment and characterization of melon genotypes. Taylor & Francis 27(1):1-17.
  7. Claire, K., M. Falkowski, J. Tabart, J.O. Defraigne, J. Dommes and J. Pincemail. 2007. Evolution of antioxidant capacity during storage of selected fruits and vegetables. J. Agric. Food Chem. 55(21):8596-8603. https://doi.org/10.1021/jf071736j
  8. Davis, A.R., W.W. Fish and P. Perkins-Veazie. 2008-2009. Rapid spectrophotometric method to determine β-carotene content in Cucumis melo germplasm. Cucurbit Genetics Cooperative Report, Kevin Crosby College Station, TX (USA). 31-32:5-7.
  9. Fish, W.W., P. Perkins-Veazie and J.K. Collins. 2002. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food. Comp. Anal. 15:307-317.
  10. Grazielle, L., R. de O., M. Isaiane, S.C.N. Sara, L.S.V. Rony, L.P. Dayanne, A.O.R. Hugo, F.S.A. Cicero, L.L.M. Bruna, F.A. Cristiane, H.A.M. Ana and S.P. Thais. 2021. Antioxidant stability enhancement of carotenoid rich-extract from cantaloupe melon (Cucumis melo L.) nanoencapsulated in gelatin under different storage conditions. Food Chem. 348:129055. https://doi.org/10.1016/j.foodchem.2021.129055
  11. Hari, K. and K. Prashant. 2021. Advances in melon breeding (Cucumis melo L.): An update. Sci. Hortic. 282:110045. https://doi.org/10.1016/j.scienta.2021.110045
  12. Ik, H.B., H.S. Kang, W.J. Jeong, J.H. Ryu, O.H. Lee, O.H. Lee and H. Chang. 2021. Characterization of phenotypic traits and application of fruit flesh color marker in melon (Cucumis melo L.) accessions. Korean J. Plant Res. 34(5):478-490 (in Korean). https://doi.org/10.7732/KJPR.2021.34.5.478
  13. Lester, G.E. 2008. Antioxidant, sugar, mineral, and phytonutrient concentrations across edible fruit tissues of orange-fleshed honeydew melon (Cucumis melo L.). J. Agr. Food Chem. 56 (10):3694-3698. https://doi.org/10.1021/jf8001735
  14. Li, R., P. Hong and X. Zheng. 2019. β-Carotene attenuates lipopolysaccharide-induced inflammation via inhibition of the NF-κB, JAK2/STAT3 and JNK/p38 MAPK signaling pathways in macrophages. J. Anim. Sci. 90(1):140-148. https://doi.org/10.1111/asj.13108
  15. Lingyu, Z., S. Yang, L. Huilin, W. Min, G. Haizhou, L. Hainan and Z. Xin. 2021. J. Food Sci. 86:2118-2130. https://doi.org/10.1111/1750-3841.15684
  16. Liu, F. Jingbin, K.S. Mallappa, Y. Maddipatla, R.R. Gudepalya, P. Boregowda and D. Yue. 2020. Anticancer properties of different solvent extracts of Cucumis melo L. Seeds and whole fruit and their metabolite profiling using HPLC and GC-MS. BioMed Res. Int. 9:5282949.
  17. Melisa, E.Y., A.R. Torresi, C. Cuyamendous,.G..Reversat, C. Oger, J.M. Galano, T. Durand, C. Vigor and M.A. Nazareno. 2016. Thermal stress in melon plants: phytoprostanes and phytofurans as oxidative stress biomarkers and the effect of antioxidant supplementation. J. Agric. Food Chem. 64: 8296-8304. https://doi.org/10.1021/acs.jafc.6b03011
  18. Monforte, A.J., M. Olive, M.J. Gonzalo, J.M. Alvarez, R.D. Sanjuan and P. Arus. 2004. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor. Appl. Genet 108:750758.
  19. Nakagawa, M., M. Ueyama, H. Tsuruda, T. Uno, K. Kanamaru, B. Mikami and H. Yamagata. 2010. Functional analysis of the cucumisin propeptide as a potent inhibitor of its mature enzyme. J. Biol. Chem. 285:29797-29807. https://doi.org/10.1074/jbc.M109.083162
  20. Olivas, G.I. and G.V. Barbosa-Canovas. 2005. Edible coatings for fresh-cut fruits. Critical Rev. Food Sci. Nutr. 45:657663.
  21. Peinado, I., M. Mason, A. Romano, F. Biasioli and M. Scampicchio. 2016. Stability of β-carotene in polyethylene oxide electrospun nanofibers. Appl. Surf. Sci. 370:111-116. https://doi.org/10.1016/j.apsusc.2016.02.150
  22. Priscilla, M.R,, M.J.S. Larissa and G.R. Macedob. 2020. Melon By-Products: Biopotential in human health and food processing. Food Rev. Int. 36(1):15-38. https://doi.org/10.1080/87559129.2019.1613662
  23. Ricardo, G.G., A.C. Debora, N.A. Cristobal, R.M. Ana and P. Manuela. 2020. Valorization of melon fruit (Cucumis melo L.) by-products: Phytochemical and biofunctional properties with Emphasis on recent trends and advances. Food Sci. Technol. 99:507-519. https://doi.org/10.1016/j.tifs.2020.03.033
  24. Ricardo, G.G., A.C. Debora, O. Ana, N.A. Cristobal, R.M. Ana and P. Manuela. 2021. A chemical calorisation of melon peels towards functional food ingredients: Bioactives profile and antioxidant properties. Food Chem. 335:127579. https://doi.org/10.1016/j.foodchem.2020.127579
  25. Richard, H. and E. Ines. 2010. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 91:1461S-1467S. https://doi.org/10.3945/ajcn.2010.28674F
  26. Rodriguez, P.C., P.R. Quirantes, G.A. Fernandez and C.A. Segura. 2013. Comparative characterization of phenolic and other polar compounds inSpanish melon cultivars by using high-performance liquid chromatography coupled to electrospray ionization quadrupole-time of flight mass spectrometry. Food Res. Int. 54(2):1519-1527. https://doi.org/10.1016/j.foodres.2013.09.011
  27. Rudenskaya, G.N., E.A. Bogdanova, B.N. Golovkin and V.M. Stepanov. 1995. Macuralisin - a serine protease from fruit of Maclura pomifera (Raf.) Schneid. Planta. 196:174-179. https://doi.org/10.1007/BF00193231
  28. Saini, R.K., S.H. Nile and S.W. Park. 2015. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res. Int. 76:735-750. https://doi.org/10.1016/j.foodres.2015.07.047
  29. Shofian, N.M., A.A. Hamid, A. Osman, N. Saari, F. Anwar, M.S.P. Dek and M.R. Hairuddin. 2011. Effect of freezedrying on the antioxidant compounds and antioxidant activity of selected tropical fruits. Int. J. Mol. Sci. 12:4678-4692. https://doi.org/10.3390/ijms12074678
  30. Sies, H. and W. Stahl. 1995. Vitamins E and C, a-carotene, and other carotenoids as antioxidants. Am. J. Clin. Nutr. 62: 1315-1321.
  31. Uchikoba, T., L. Arima, M. Shimada, H. Yonezawa and M. Kaneda. 2000. Isolation and some properties of a serine protease from the fruits of Cudrania cochinchinensis (Lour.) Kudo et Masam. Biosci. Biotech. Biochem. 63(4):623-624.
  32. Wackerbarth, H., T. Stoll, S. Gebken, C. Pelters and U. Bindrich. 2009. Carotenoid-protein interaction as an approach for the formulation of functional food emulsions. Food Res. Int. 42(9):1254-1258. https://doi.org/10.1016/j.foodres.2009.04.002
  33. Wahyono, A., A.C. Dewi, S. Oktavia, S. Jamilah and W.W. Kang. 2019. Antioxidant activity and total phenolic contents of bread enriched with pumpkin flour. Earth Env. Sci. 411: 012049.
  34. Xudong, Z., B. Yuzhuo, W. Yun, W. Chunlan, F. Jianhua, G. Longlan, L. Yu, F. Jingbin, K.S. Mallappa, Y. Maddipatla, R.R. Gudepalya, P. Boregowda and D. Yue. 2020. Anticancer properties of different solvent extracts of Cucumis melo L. seeds and whole fruit and their metabolite profiling using HPLC and GC-MS. BioMed Res. Int. 9:5282949.
  35. Yan, L.Y., L.T. Teng and T.J. Jhi. 2006. Antioxidant properties of guava fruit: Comparison with some local fruits. Sunway Acam. J. 3:9-20.
  36. Yemesrach, T., U. Kelbessa, B. Abebe and T. Geremew. 2021. Effect of treatment on the beta-carotene retention of orange fleshed sweet potato varieties grown in Hawassa, Ethiopia. J. Nutr. Food Sci. 11:799.
  37. Yoo, G., H.W. Kim, G.D. Kim, H.I. Rhee and D.C. Lee. 2020. Polyclonal antibody against purified cucumisin from the Korean melon and its application: Thrombolytic application. J. Biochem. 29(2):287-293.