DOI QR코드

DOI QR Code

Anti-melanogenesis Effects of Schizophragma hydrangeoides Leaf Ethanol Extracts via Downregulation of Tyrosinase Activity

  • Hyun, Ho Bong (Biodiversity Research Institute, Jeju Technopark) ;
  • Hyeon, Hye Jin (Biodiversity Research Institute, Jeju Technopark) ;
  • Kim, Sung Chun (Biodiversity Research Institute, Jeju Technopark) ;
  • Go, Boram (Biodiversity Research Institute, Jeju Technopark) ;
  • Yoon, Seon-A (Biodiversity Research Institute, Jeju Technopark) ;
  • Jung, Yong-Hwan (Biodiversity Research Institute, Jeju Technopark) ;
  • Ham, Young-Min (Biodiversity Research Institute, Jeju Technopark)
  • Received : 2021.11.09
  • Accepted : 2021.11.23
  • Published : 2021.12.01

Abstract

Whitening agents derived from natural sources which do not have side effects are sought after. Schizophragma hydrangeoides is an edible plant that grows wild on Jeju Island. We aimed to determine whether S. hydrangeoides extracts show anti-melanogenic activity. Here, we found that 70% ethanol extracts of S. hydrangeoides leaf suppressed α-melanocyte-stimulating hormone-induced melanogenesis in B16F10 mouse melanoma cells. This activity of anti-melanogenesis in B16F10 cells were investigated by determining melanin content and tyrosinase activity, and by performing western blotting. The 70% ethanol extract downregulated tyrosinase and tyrosinase-related protein 1. In addition, the n-hexane fraction of S. hydrangeoides leaf (HFSH) exhibited significant anti-melanogenic activity among the various solvent fractions tested without reducing the viability of B16F10 cells. Taken together, these results indicate that extracts from S. hydrangeoides leaf can influence cellular processes via modulation of tyrosinase activity. Hence, S. hydrangeoides can be used as a whitening agent in the cosmetic industry and as a therapeutic agent for treating hyperpigmentation disorders in the clinic.

Keywords

Acknowledgement

This study was financially supported by the Ministry of Trade, Industry, and Energy and the Korea Institute for Advancement of Technology through the National Innovation Cluster R&D program (Research and Development of Jeju Raw Materials for Customized Cosmetics/Food: P0015361).

References

  1. Beaumont, K.A., D.J. Smit, Y.Y. Liu, E. Chai, M.P. Patel, G.L. Millhauser, J.J. Smith, P.F. Alewood and R.A. Sturm. 2012. Melanocortin-1 receptor-mediated signaling pathways activated by NDP-MSH and HBD3 ligands. Pigment Cell Melanoma Res. 25:370-374. https://doi.org/10.1111/j.1755-148X.2012.00990.x
  2. Chiang, H.M., Y.C. Chien, C.H. Wu, Y.H. Kuo, W.C. Wu, Y.Y. Pan, Y.H. Su and K.C. Wen. 2014. Hydroalcoholic extract of Rhodiola rosea L. (Crassulaceae) and its hydrolysate inhibit melanogenesis in B16F0 cells by regulating the CREB/MITF/tyrosinase pathway. Food Chem. Toxicol. 65:129-139. https://doi.org/10.1016/j.fct.2013.12.032
  3. Chung, K.W., H.O. Jeong, E.J. Jang, Y.J. Choi, D.H. Kim, S.R. Kim, K.J. Lee, H.J. Lee, P. Chun, Y. Byun, H.R. Moon and H.Y. Chung. 2013. Characterization of a small molecule inhibitor of melanogenesis that inhibits tyrosinase activity and scavenges nitric oxide (NO). Biochim. Biophys. Acta 1830:4752-4761. https://doi.org/10.1016/j.bbagen.2013.06.002
  4. del Marmol, V. and F. Beermann. 1996. Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett. 381:165-168. https://doi.org/10.1016/0014-5793(96)00109-3
  5. Garcia-Gavin, J., D. Gonzalez-Vilas, V. Fernandez-Redondo and J. Toribio. 2010. Pigmented contact dermatitis due to kojic acid. A paradoxical side effect of a skin lightener. Contact Dermatitis 62:63-64. https://doi.org/10.1111/j.1600-0536.2009.01673.x
  6. Hearing, V.J. 2000. The melanosome: the perfect model for cellular responses to the environment. Pigment Cell Res. 13 (Suppl 8):23-34. https://doi.org/10.1034/j.1600-0749.13.s8.7.x
  7. Hong, Y.H., E.Y. Jung, D.O. Noh and H.J. Suh. 2014. Physiological effects of formulation containing tannase-converted green tea extract on skin care: physical stability, collagenase, elastase, and tyrosinase activities. Integr. Med. Res. 3:25-33. https://doi.org/10.1016/j.imr.2013.12.003
  8. Hosoi, J., E. Abe, T. Suda and T. Kuroki. 1985. Regulation of melanin synthesis of B16 mouse melanoma cells by 1a,25-dihydroxyvitamin D3 and retinoic acid. Cancer Res. 48: 1474-1478.
  9. Hsiao, J.J. and D.E. Fisher. 2014. The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Arch. Biochem. Biophys. 563:28-34. https://doi.org/10.1016/j.abb.2014.07.019
  10. Hwang, E., T.H. Lee, W.J. Lee, W.S. Shim, E.J. Yeo, S. Kim and S.Y. Kim. 2016. A novel synthetic Piper amide derivative NED-180 inhibits hyperpigmentation by activating the PI3K and ERK pathways and by regulating Ca2+ influx via TRPM1 channels. Pigment Cell Melanoma Res. 29:81-91. https://doi.org/10.1111/pcmr.12430
  11. Jimenez-Cervantes, C., M. Martinez-Esparza, C. Perez, N. Daum, F. Solano and J.C. Garcia-Borron. 2001. Inhibition of melanogenesis in response to oxidative stress: transient downregulation of melanocyte differentiation markers and possible involvement of microphthalmia transcription factor. J. Cell Sci. 114:2335-2344. https://doi.org/10.1242/jcs.114.12.2335
  12. Jung, H., H. Chung, S.E. Chang, S. Choi, I.O. Han, D.H. Kang and E.S. Oh. 2014. Syndecan-2 regulates melanin synthesis via protein kinase C βII-mediated tyrosinase activation. Pigment Cell Melanoma Res. 27:387-397. https://doi.org/10.1111/pcmr.12223
  13. Ko, G.A. and S.K. Cho. 2018. Phytol suppresses melanogenesis through proteasomal degradation of MITF, Via ROS-ERK Signaling Pathway. Chem. Biol. Interact. 286:132-140. https://doi.org/10.1016/j.cbi.2018.02.033
  14. Lee, E.J., Y.S. Lee, S. Hwang, S. Kim, J.S. Hwang and T.Y. Kim. 2011. N-(3,5-dimethylphenyl)-3-methoxybenzamide (A(3)B(5)) targets TRP-2 and inhibits melanogenesis and melanoma growth. J. Invest. Dermatol. 131:1701-1709. https://doi.org/10.1038/jid.2011.98
  15. McGinty, D., C.S. Letizia and A.M. 2010. Fragrance material review on phytol. Food Chem. Toxicol. 48 (Suppl 3):59-63.
  16. Moon, E., A.J. Kim and S.Y. Kim. 2012. Sarsasapogenin increases melanin synthesis via induction of tyrosinase and microphthalmia-associated transcription factor expression in melan-a cells. Biomol. Ther. (Seoul) 20:340-345. https://doi.org/10.4062/biomolther.2012.20.3.340
  17. Park, S.I, H.R. Yoon, J. Shin, S.J. Lee, D.Y. Kim and H.M. Lee. 2021. Tyrosinase inhibitory activity and melanin production inhibitory activity of taraxinic acid from Taraxacum coreanum. Korean J. Plant Res. 34(4):368-376 (in Korean). https://doi.org/10.7732/KJPR.2021.34.4.368
  18. Shibahara, S., K.I. Yasumoto, S. Amae, T. Udono, K.I. Watanabe, H. Saito and K. Takeda. 2000. Regulation of pigment cell-specific gene expression by MITF. Pigment Cell Res. 13 (Suppl 8):98-102. https://doi.org/10.1034/j.1600-0749.13.s8.18.x
  19. Shibula, K. and S. Velavan. 2015. Determination of phytocomponents in methanolic extract of Annona muricata leaf using GC-MS technique. J. Pharmacogn. Phytochem. Res. 7:1251-1255.
  20. Speeckaert, R., M. Van Gele, M.M. Speeckaert, J. Lambert and N. van Geel. 2014. The biology of hyperpigmentation syndromes. Pigment Cell Melanoma Res. 27:512-524. https://doi.org/10.1111/pcmr.12235
  21. Swope, V.B., J.A. Jameson, K.L. McFarland and D.M. Supp, W.E. Miller, D.W. McGraw, M.A. Patel, M.A. Nix, G.L. Millhauser, G.F. Babcock and Z.A. Abdel-Malek. 2012. Defining MC1R regulation in human melanocytes by its agonist α-melanocortin and antagonists agouti signaling protein and β-defensin 3. J. Invest. Dermatol. 132:2255-2262. https://doi.org/10.1038/jid.2012.135
  22. Takizawa, T., T. Imai, J. Onose, M. Ueda, T. Tamura, K. Mitsumori, K. Izumi and M. Hirose. 2004. Enhancement of heaptocarcinogenesis by kojic acid in rat two-stage models after initiation with N-bis (2-hydroxypropyl) nitrosamine or N-diethylnitrosamine. Toxicol. Sci. 81:43-49. https://doi.org/10.1093/toxsci/kfh195