Acknowledgement
This study was financially supported by the Ministry of Trade, Industry, and Energy and the Korea Institute for Advancement of Technology through the National Innovation Cluster R&D program (Research and Development of Jeju Raw Materials for Customized Cosmetics/Food: P0015361).
References
- Beaumont, K.A., D.J. Smit, Y.Y. Liu, E. Chai, M.P. Patel, G.L. Millhauser, J.J. Smith, P.F. Alewood and R.A. Sturm. 2012. Melanocortin-1 receptor-mediated signaling pathways activated by NDP-MSH and HBD3 ligands. Pigment Cell Melanoma Res. 25:370-374. https://doi.org/10.1111/j.1755-148X.2012.00990.x
- Chiang, H.M., Y.C. Chien, C.H. Wu, Y.H. Kuo, W.C. Wu, Y.Y. Pan, Y.H. Su and K.C. Wen. 2014. Hydroalcoholic extract of Rhodiola rosea L. (Crassulaceae) and its hydrolysate inhibit melanogenesis in B16F0 cells by regulating the CREB/MITF/tyrosinase pathway. Food Chem. Toxicol. 65:129-139. https://doi.org/10.1016/j.fct.2013.12.032
- Chung, K.W., H.O. Jeong, E.J. Jang, Y.J. Choi, D.H. Kim, S.R. Kim, K.J. Lee, H.J. Lee, P. Chun, Y. Byun, H.R. Moon and H.Y. Chung. 2013. Characterization of a small molecule inhibitor of melanogenesis that inhibits tyrosinase activity and scavenges nitric oxide (NO). Biochim. Biophys. Acta 1830:4752-4761. https://doi.org/10.1016/j.bbagen.2013.06.002
- del Marmol, V. and F. Beermann. 1996. Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett. 381:165-168. https://doi.org/10.1016/0014-5793(96)00109-3
- Garcia-Gavin, J., D. Gonzalez-Vilas, V. Fernandez-Redondo and J. Toribio. 2010. Pigmented contact dermatitis due to kojic acid. A paradoxical side effect of a skin lightener. Contact Dermatitis 62:63-64. https://doi.org/10.1111/j.1600-0536.2009.01673.x
- Hearing, V.J. 2000. The melanosome: the perfect model for cellular responses to the environment. Pigment Cell Res. 13 (Suppl 8):23-34. https://doi.org/10.1034/j.1600-0749.13.s8.7.x
- Hong, Y.H., E.Y. Jung, D.O. Noh and H.J. Suh. 2014. Physiological effects of formulation containing tannase-converted green tea extract on skin care: physical stability, collagenase, elastase, and tyrosinase activities. Integr. Med. Res. 3:25-33. https://doi.org/10.1016/j.imr.2013.12.003
- Hosoi, J., E. Abe, T. Suda and T. Kuroki. 1985. Regulation of melanin synthesis of B16 mouse melanoma cells by 1a,25-dihydroxyvitamin D3 and retinoic acid. Cancer Res. 48: 1474-1478.
- Hsiao, J.J. and D.E. Fisher. 2014. The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Arch. Biochem. Biophys. 563:28-34. https://doi.org/10.1016/j.abb.2014.07.019
- Hwang, E., T.H. Lee, W.J. Lee, W.S. Shim, E.J. Yeo, S. Kim and S.Y. Kim. 2016. A novel synthetic Piper amide derivative NED-180 inhibits hyperpigmentation by activating the PI3K and ERK pathways and by regulating Ca2+ influx via TRPM1 channels. Pigment Cell Melanoma Res. 29:81-91. https://doi.org/10.1111/pcmr.12430
- Jimenez-Cervantes, C., M. Martinez-Esparza, C. Perez, N. Daum, F. Solano and J.C. Garcia-Borron. 2001. Inhibition of melanogenesis in response to oxidative stress: transient downregulation of melanocyte differentiation markers and possible involvement of microphthalmia transcription factor. J. Cell Sci. 114:2335-2344. https://doi.org/10.1242/jcs.114.12.2335
- Jung, H., H. Chung, S.E. Chang, S. Choi, I.O. Han, D.H. Kang and E.S. Oh. 2014. Syndecan-2 regulates melanin synthesis via protein kinase C βII-mediated tyrosinase activation. Pigment Cell Melanoma Res. 27:387-397. https://doi.org/10.1111/pcmr.12223
- Ko, G.A. and S.K. Cho. 2018. Phytol suppresses melanogenesis through proteasomal degradation of MITF, Via ROS-ERK Signaling Pathway. Chem. Biol. Interact. 286:132-140. https://doi.org/10.1016/j.cbi.2018.02.033
- Lee, E.J., Y.S. Lee, S. Hwang, S. Kim, J.S. Hwang and T.Y. Kim. 2011. N-(3,5-dimethylphenyl)-3-methoxybenzamide (A(3)B(5)) targets TRP-2 and inhibits melanogenesis and melanoma growth. J. Invest. Dermatol. 131:1701-1709. https://doi.org/10.1038/jid.2011.98
- McGinty, D., C.S. Letizia and A.M. 2010. Fragrance material review on phytol. Food Chem. Toxicol. 48 (Suppl 3):59-63.
- Moon, E., A.J. Kim and S.Y. Kim. 2012. Sarsasapogenin increases melanin synthesis via induction of tyrosinase and microphthalmia-associated transcription factor expression in melan-a cells. Biomol. Ther. (Seoul) 20:340-345. https://doi.org/10.4062/biomolther.2012.20.3.340
- Park, S.I, H.R. Yoon, J. Shin, S.J. Lee, D.Y. Kim and H.M. Lee. 2021. Tyrosinase inhibitory activity and melanin production inhibitory activity of taraxinic acid from Taraxacum coreanum. Korean J. Plant Res. 34(4):368-376 (in Korean). https://doi.org/10.7732/KJPR.2021.34.4.368
- Shibahara, S., K.I. Yasumoto, S. Amae, T. Udono, K.I. Watanabe, H. Saito and K. Takeda. 2000. Regulation of pigment cell-specific gene expression by MITF. Pigment Cell Res. 13 (Suppl 8):98-102. https://doi.org/10.1034/j.1600-0749.13.s8.18.x
- Shibula, K. and S. Velavan. 2015. Determination of phytocomponents in methanolic extract of Annona muricata leaf using GC-MS technique. J. Pharmacogn. Phytochem. Res. 7:1251-1255.
- Speeckaert, R., M. Van Gele, M.M. Speeckaert, J. Lambert and N. van Geel. 2014. The biology of hyperpigmentation syndromes. Pigment Cell Melanoma Res. 27:512-524. https://doi.org/10.1111/pcmr.12235
- Swope, V.B., J.A. Jameson, K.L. McFarland and D.M. Supp, W.E. Miller, D.W. McGraw, M.A. Patel, M.A. Nix, G.L. Millhauser, G.F. Babcock and Z.A. Abdel-Malek. 2012. Defining MC1R regulation in human melanocytes by its agonist α-melanocortin and antagonists agouti signaling protein and β-defensin 3. J. Invest. Dermatol. 132:2255-2262. https://doi.org/10.1038/jid.2012.135
- Takizawa, T., T. Imai, J. Onose, M. Ueda, T. Tamura, K. Mitsumori, K. Izumi and M. Hirose. 2004. Enhancement of heaptocarcinogenesis by kojic acid in rat two-stage models after initiation with N-bis (2-hydroxypropyl) nitrosamine or N-diethylnitrosamine. Toxicol. Sci. 81:43-49. https://doi.org/10.1093/toxsci/kfh195