DOI QR코드

DOI QR Code

Effect of capacitive coupling in superconducting coplanar waveguide resonator

  • Baek, Geonwoo (Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Bongkeon (Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST)) ;
  • Arif, Sara (Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST)) ;
  • Doh, Yong-Joo (Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST))
  • 투고 : 2021.11.24
  • 심사 : 2021.12.16
  • 발행 : 2021.12.31

초록

Superconducting coplanar waveguide (SCPW) resonators with high quality (Q) factor are widely used for developing quantum sensors and quantum information processors. Here we conducted numerical simulations of SCPW resonators to investigate the relationship between the Q factor and the coupling capacitance of the resonator. Varying the geometrical shape of both ends and coupling parameters of the SCPW resonator resulted in a change of the coupling capacitances and the Q factor as well. Our calculation results indicate that the performance of the SCPW resonator is highly sensitive to the capacitive coupling and searching for an optimal coupling condition would be crucial for developing high-performance SCPW resonator.

키워드

과제정보

This study was supported by the NRF of Korea through the research program (2018R1A3B1052827 and 2019M3E4A80146) and the GRI grant funded by GIST in 2021.

참고문헌

  1. P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, "A broadband superconducting detector suitable for use in large arrays", Nature 425, pp. 817-821, 2003. https://doi.org/10.1038/nature02037
  2. Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dreau, J. F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, "Strong Coupling of a Spin Ensemble to a Superconducting Resonator", Physical Review Letters 105, pp. 140502, 2010. https://doi.org/10.1103/PhysRevLett.105.140502
  3. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics", Nature 431, pp. 162-167, 2004 https://doi.org/10.1038/nature02851
  4. K. D. Petersson, L. W. McFaul, M. D. Schroer, M. Jung, J. M. Taylor, A. A. Houck, and J. R. Petta, "Circuit quantum electrodynamics with a spin qubit", Nature 490, pp. 380-383, 2012. https://doi.org/10.1038/nature11559
  5. G. de Lange, B. van Heck, A. Bruno, D. J van Woerkom, A. Geresdi, S. R Plissard, E. P A M Bakkers, A. R Akhmerov, and L. DiCarlo, "Realization of Microwave Quantum Circuits Using Hybrid Superconducting-Semiconducting Nanowire Josephson Elements", Physical Review Letters 115, pp. 127002, 2015. https://doi.org/10.1103/PhysRevLett.115.127002
  6. E. Ginossar and E. Grosfeld, "Microwave transitions as a signature of coherent parity mixing effects in the Majorana-transmon qubit", Nature Communications 5, pp. 4772, 2014. https://doi.org/10.1038/ncomms5772
  7. Y.-J. Doh, J. A. van Dam, A. L. Roest, E. P. A. M. Bakkers, L. P. Kouwenhoven, and S. De Franceschi, "Tunable supercurrent through semiconductor nanowires", Science 309, pp. 272, 2005 https://doi.org/10.1126/science.1113523
  8. B.-K. Kim, H.-S. Kim, Y. Yang, X. Peng, D. Yu, and Y.-J. Doh, "Strong Superconducting Proximity Effects in PbS Semiconductor Nanowires", ACS Nano 11, pp. 221-226, 2017. https://doi.org/10.1021/acsnano.6b04774
  9. H.-S. Kim, T.-H. Hwang, N.-H. Kim, Y. Hou, D. Yu, H. S. Sim, and Y.-J. Doh, "Adjustable Quantum Interference Oscillations in Sb-Doped Bi2Se3 Topological Insulator Nanoribbons", ACS Nano 14, pp. 14118-14125, 2020. https://doi.org/10.1021/acsnano.0c06892
  10. L. Frunzio, A. Wallraff, D. Schuster, J. Majer, and R. Schoelkopf, "Fabrication and characterization of superconducting circuit QED devices for quantum computation", IEEE Transactions on Applied Superconductivity 15, pp. 860-863, 2005. https://doi.org/10.1109/TASC.2005.850084
  11. J. M. Sage, V. Bolkhovsky, W. D. Oliver, B. Turek, and P. B. Welander, "Study of loss in superconducting coplanar waveguide resonators", J. Appl. Phys. 109, pp. 063915, 2011. https://doi.org/10.1063/1.3552890
  12. B. Kim, M. Jung, J. Kim, J. Suh, and Y.-J. Doh, "Fabrication and characterization of superconducting coplanar waveguide resonators", Progress in Superconductivity and Cryogenics 22, pp. 10-13, 2020. https://doi.org/10.9714/PSAC.2020.22.4.010
  13. M. Goppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J. M. Fink, P. J. Leek, G. Puebla, L. Steffen, and A. Wallraff, "Coplanar waveguide resonators for circuit quantum electrodynamics", J. Appl. Phys. 104, pp. 113904, 2008. https://doi.org/10.1063/1.3010859
  14. R.N. Simons, Coplanar waveguide circuits, components, and systems. (John Wiley & Sons, 2004).
  15. K. Watanabe, K. Yoshida, T. Aoki, and S. Kohjiro, "Kinetic Inductance of Superconducting Coplanar Waveguides", Japanese Journal of Applied Physics 33, pp. 5708-5712, 1994. https://doi.org/10.1143/JJAP.33.5708
  16. A. Bruno, G. de Lange, S. Asaad, K. L. van der Enden, N. K. Langford, and L. DiCarlo, "Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates", Appl. Phys. Lett. 106, pp. 182601, 2015. https://doi.org/10.1063/1.4919761
  17. R. E. George, J. Senior, O.-P. Saira, J. P. Pekola, S. E. de Graaf, T. Lindstrom, Yu A. Pashkin, "Multiplexing superconducting qubit circuit for single microwave photon generation", J. Low Temp. Phys. 189, pp. 60, 2017. https://doi.org/10.1007/s10909-017-1787-x