• Title/Summary/Keyword: Cover depth

Search Result 425, Processing Time 0.029 seconds

Extraction of Snow Cover Area and Depth Using NOAA/AVHRR Images (NOAA/AVHRR 영상을 이용한 적설분포 및 적설심 추출)

  • Kang, Su-Man;Kwon, Hyung-Joong;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.254-259
    • /
    • 2005
  • The shape of a streamflow hydrograph is very much controlled by the area and depth of snow cover in mountain area. The purpose of this study is to suggest extraction methods for snow cover area and depth using NOAA/AVHRR images in Soyanggang watershed. Snow cover area maps ware derived form channel 1, 3, 4 images of NOAA/AVHRR based on threshold value. In order to extract snow cover depth, snow cover area maps were overlaid daily snow depth data form 7 meteorological observation stations. Snow cover area and depth was mapped for period of Dec. 2002 and Mar. 2003. For evaluating snowmelt changes, depletion curve was created using daily snow cover area in the same period. It is necessary to compare these results with observed data and check the applicability of the suggested method in snowmelt simulation.

  • PDF

Extraction of Snow Cover Area and Depth Using MODIS Image for 5 River Basins South Korea (MODIS 위성영상을 이용한 국내 5대강 유역 적설분포 및 적설심 추출)

  • Hong, U-Yong;Sin, Hyeong-Jin;Kim, Seong-Jun
    • KCID journal
    • /
    • v.14 no.2
    • /
    • pp.225-235
    • /
    • 2007
  • The shape of streamflow hydrograph during the early period of spring is very much controlled by the area and depth of snow cover especially in mountainous area. When we simulate the streamfolw of a watershed snowmelt, we need some information for snow cover extent and depth distribution as parameters and input data in the hydrological models. The purpose of this study is to suggest an extraction method of snow cover area and snow depth distribution using Terra MODIS image. Snow cover extent for South Korea was extracted for the period of December 2000 and April 2006. For the snow cover area, the snow depth was interpolated using the snow depth data from 69 meteorological observation stations. With these data, it is necessary to run a hydrological model considering the snow-related data and compare the simulated streamflow with the observed data and check the applicability for the snowmelt simulation.

  • PDF

Evaluation of minimum depth of soil cover and reinforcement of soil cover above soil-steel bridge (지중강판 구조물의 최소토피고 평가 및 상부토피 보강 방안)

  • Jung, Hyun-Sik;Lee, Jong-Ku;Cho, Sung-Min;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.425-432
    • /
    • 2004
  • In this paper, the results of the numerical analysis for the minimum depth of soil cover have been compared with those of currently suggested codes. Based on this comparison, the minimum depth of soil cover for the structures with long spans was suggested. Results showed that the actual depth of the soil cover required against soil failure over a circular and low-profile arch structure does not vary significantly with the size of the span and for the circular structure, the minimum depth of the soil cover was about 1.5m, and for the low-profile arch structures, below about 1.6m. And the previously established code in which the minimum depth of soil cover is defined to linearly increase with the increase in the span (CHBDC, 2001) was very conservative. For the structure with the relieving slab, the maximum live load thrust was reduced by about 36 percent and the maximum moment about 81 percent. The numerical analysis gave more conservative estimation of the live-load thrusts than the other design methods.

  • PDF

Effect of cover depth and rebar diameter on shrinkage behavior of ultra-high-performance fiber-reinforced concrete slabs

  • Yoo, Doo-Yeol;Kwon, Ki-Yeon;Yang, Jun-Mo;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.711-719
    • /
    • 2017
  • This study investigates the effects of reinforcing bar diameter and cover depth on the shrinkage behavior of restrained ultra-high-performance fiber-reinforced concrete (UHPFRC) slabs. For this, twelve large-sized UHPFRC slabs with three different rebar diameters ($d_b=9.5$, 15.9, and 22.2 mm) and four different cover depths (h=5, 10, 20, and 30 mm) were fabricated. In addition, a large-sized UHPFRC slab without steel rebar was fabricated for evaluating degree of restraint. Test results revealed that the uses of steel rebar with a large diameter, leading to a larger reinforcement ratio, and a low cover depth are unfavorable regarding the restrained shrinkage performance of UHPFRC slabs, since a larger rebar diameter and a lower cover depth result in a higher degree of restraint. The shrinkage strain near the exposed surface was high because of water evaporation. However, below a depth of 18 mm, the shrinkage strain was seldom influenced by the cover depth; this was because of the very dense microstructure of UHPFRC. Finally, owing to their superior tensile strength, all UHPFRC slabs with steel rebars tested in this study showed no shrinkage cracks until 30 days.

Effect of hydraulic lining-ground interaction on subsea tunnels (라이닝-지반 수리상호작용이 해저터널에 미치는 영향)

  • Shin, Jong-Ho;Park, Dong-In;Joo, Eun-Jung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2008
  • One of the most important design concerns for undersea tunnels is to establish design water load and flow rate. These are greatly dependent on the hydraulic factors such as water head, cover depth, hydraulic boundary conditions. In this paper, the influence of the hydraulic design factors on the ground loading and the inflow rate was investigated using the coupled finite element method. A horse shoe-shaped tunnel constructed 30 m below sea bottom was adopted to evaluate the water head effect considering various water depth for varying hydraulic conditions and relative permeability between lining and ground. The effect of cover depth was analysed for varying cover depth with the water depth of 60 m. The results were considered in terms of pore water pressure, ground loading and flow rate. Ground loading increases with an increase in water head and cover depth without depending on hydraulic boundary conditions. This points out that in leaking tunnels an increase in water depth increases seepage force which consequently increases ground loading. Furthermore, it is identified that an increase in water head and cover depth increases the rate of inflow and a decrease in the permeability ratio reduces the rate of inflow considerably.

  • PDF

A Study on the Allowable Crack Width of RC Beam with Corrosive Environment (염해환경에서의 RC보의 허용 균열폭 산정에 관한 연구)

  • Kim, Dongbaek;Kwon, Soondong;An, Kwanghee
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.253-261
    • /
    • 2015
  • Deterioration of reinforced concrete structures in corrosive environment is tend to be accelerated due to ingress of aggressive ion such as chloride ion. Chloride-induced corrosion is affected by various factors such as cover concrete qualities, width of existing cracks, and cover depth of concrete. However, the allowable crack width of RC structure in design code does not consider the concrete material properties and conditions of construction except the cover depth. In this paper, an equation for allowable crack width is proposed to consider the cover concrete quality, crack width, and cover depth. Crack width, cover depth, and water-cement ratio of concrete are selected as influencing factors on corrosion of reinforcement for rapid chloride tests. From test results, the relationships between the factors and corrosion are derived. Finally, the equation for allowable crack width is derived in terms of concrete compressive strength and cover depth. The presented equation is verified by comparative calculations with design code variables.

Behaviour of soil-steel composite bridge with various cover depths under seismic excitation

  • Maleska, Tomasz;Beben, Damian
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.747-764
    • /
    • 2022
  • The design codes and calculation methods related to soil-steel composite bridges and culverts only specify the minimum soil cover depth. This value is connected with the bridge span and shell height. In the case of static and dynamic loads (like passing vehicles), such approach seems to be quite reasonable. However, it is important to know how the soil cover depth affects the behaviour of soil-steel composite bridges under seismic excitation. This paper presents the results of a numerical study of soil-steel bridges with different soil cover depths (1.00, 2.00, 2.40, 3.00, 4.00, 5.00, 6.00 and 7.00 m) under seismic excitation. In addition, the same soil cover depths with different boundary conditions of the soil-steel bridge were analysed. The analysed bridge has two closed pipe-arches in its cross section. The load-carrying structure was constructed as two shells assembled from corrugated steel plate sheets, designed with a depth of 0.05 m, pitch of 0.15 m, and plate thickness of 0.003 m. The shell span is 4.40 m, and the shell height is 2.80 m. Numerical analysis was conducted using the DIANA programme based on the finite element method. A nonlinear model with El Centro records and the time history method was used to analyse the problem.

Examination on Required Cover Depth to Prevent Reinforcement Corrosion Risk in Concrete

  • Yoon, In-Seok
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.157-164
    • /
    • 2012
  • In first experiment series, this paper is devoted for examining progress of reinforcement corrosion due to carbonation in concrete and to quantify uncarbonation depth to protect reinforcement from corroding. The tolerance of cover depth should be considered in order to prevent carbonation-induced corrosion. From the relationship between the weight loss of reinforcement and corrosion current density for a given time, therefore, the tolerance of cover depth to prevent carbonation-induced corrosion is computed. It is observed that corrosion occurs when the distance between carbonation front and reinforcement surface (uncarbonated depth) is smaller than 5 mm.As a secondary purpose of this study, it is investigated to examine the interaction between carbonation and chloride penetration and their effects on concrete. This was examined experimentally under various boundary conditions. For concrete under the double condition, the risk of deterioration due to carbonation was not severe. However, it was found that the carbonation of concrete could significantly accelerate chloride penetration. As a result, chloride penetration in combination with carbonation is a serious cause of deterioration of concrete.

Behavior of Jointed Concrete Pavement by Box Culvert and Reinforced Slab (박스형 암거와 보강슬래브에 의한 줄눈 콘크리트 포장의 거동)

  • Park, Joo Young;Sohn, Dueck Su;Lee, Jae Hoon;Yan, Yu;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.25-35
    • /
    • 2012
  • PURPOSES : Hollows are easily made, and bearing capacity can be lowered near underground structures because sublayers of pavement settle for a long time due to difficult compaction at the position. If loadings are applied in this condition, distresses may occur in pavement and, as the result, its lifespan can decrease due to the stress larger than that expected in design phase. Although reinforced slab is installed on side of box culvert to minimize the distresses, length of the reinforced slab is fixed as 6m in Korea without any theoretical consideration. The purpose of this paper is investigating the behavior of concrete pavement according to the cover depth of the box culvert ad the length of the reinforced slab. METHODS : The distresses of concrete pavement slabs were investigated and cover depth was surveyed at position where the box culverts were located in expressways. The concrete pavements including the box culverts were modeled by finite element method and their behaviors according to the soil cover depth were analyzed. Wheel loading was applied after considering self weight of the pavement and temperature gradient of the concrete pavement slab at Yeojoo, Gyeonggi where a test road was located. After installing pavement joint at various positions, behavior of the pavement was analyzed by changing the soil cover depth and length of the reinforced slab. RESULTS : As the result, the tensile stress developed in the pavement slab according to the joint position, cover depth, and reinforced slab length was figured out. CONCLUSIONS : More reasonable and economic design of the concrete pavement including the box culvert is expected by the research results.

Dynamic Response of Underground Three-layered Pipeline Subjected to Pile Driving Loads : II. Cover Depth (건설 현장 항타 하중에 의한 지중 삼중관 진동 거동 II. 매설 심도)

  • Yoo, Han-Kyu;Won, Jong-Hwa;Choi, Joung-Hyun;Kim, Moon-Kyum
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.15-20
    • /
    • 2011
  • This study presents the behavior characteristics of buried three-layered pipeline subjected to pile driving loads corresponding to its cover depth. The analysis considered the driving energy caused by 7 tonf of ram weight and 1.2m of stroke with 20m distance from buried pipeline for all the analysis cases. A cover depth of pipe is varied 0.6m to 3.8m for this research. Vibration Velocity and stress are investigated at the center section in longitudinal direction. With same distance from pile, attenuation ratio of vibration velocity for increment of cover depth has shown an increasing trend. Also, Stress attenuation ratio of inner pipe is increased with cover depth.