DOI QR코드

DOI QR Code

Analytical Approach to Evaluate the Nonlinear Beahviors of One-way Concrete Slab Reinforced with CFRP Grid Reinforcements

CFRP 그리드 보강근을 적용한 1-방향 콘크리트 슬래브의 해석적 방법에 의한 비선형 거동 평가

  • 천주현 ((재)한국건설생활환경시험연구원) ;
  • 김경민 ((재)한국건설생활환경시험연구원) ;
  • 신현목 (성균관대학교 건설환경공학부)
  • Received : 2021.11.01
  • Accepted : 2021.12.22
  • Published : 2021.12.31

Abstract

The purpose of this study is to present a rational analytical method for predicting the behavioral characteristics from crack occurrence to fracture for a one-way CFRP grid reinforced concrete slab specimen. A total of four specimens were selected by Zhang et al.(2004) as the main experimental variables for CFRP grid amount, material properties and loading method. Analysis was performed through the Nonlinear Finite Element analysis program(RCAHEST), which applied the newly modified constitutive relational equations by the author. The mean and coefficient of variation for maximum moment from the experiment and analysis results was predicted 1.38 and 7 %. The mean and coefficient of variation for displacement corresponding maximum moment from the experiment and analysis results was predicted 1.41and 9.8 %. The prediction results for the behavioral characteristics from crack occurrence to fracture were verified and evaluated. It is judged that additional research is needed to secure various experimental results and to develop a more reliable analytical method.

본 연구에서는 CFRP Grid를 보강근으로 적용한 1방향 콘크리트 슬래브 실험체에 대하여 균열의 발생에서부터 파괴시까지의 비탄성 거동 특성 예측을 위한 합리적인 해석적 방안을 제시하는 것을 목표로 한다. CFRP grid 보강량, 재료물성 및 하중재하 방법을 주요 실험 변수로 Zhang et al.(2004) 수행한 총 4개의 검증 대상 실험체를 선정하였다. 해석은 저자 등에 새로이 제안된 구성관계식과 재료모델을 적용한 비선형 유한요소해석 프로그램 RCAHEST을 통해 수행하였다. 실험과 해석으로부터의 최대 모멘트 및 대응 변위에 대한 평균과 변동계수는 각각 1.38와 13%로 예측하였다. 실험과 해석으로부터의 최대 모멘트에 대응하는 변위에 대한 평균과 변동계수는 1.41과 9.8%로 예측하였다. 균열의 발생에서 파괴시까지의 거동 특성에 대한 예측 결과를 검증하고 평가하였다. 추후, 다양한 실험 결과의 확보 및 보다 신뢰도 높은 해석 기법 개발을 위한 추가적인 연구 수행이 필요한것으로 판단된다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원(과제번호 21CFRP-C163381-01)으로 수행되었으며 지원에 감사드립니다.

References

  1. ACI Committee 440 (2015), Guide for the Design and Constrution of Structural Concrete Reinforced with Fiber-Reinforced Polymer(FRP) Bars(ACI 440.1R-15), American Concrete Institute, Farmington Hills.
  2. Cheon, J. H., Seong, D. J., Cho, H. J., Cho, J. Y. and Shin, H. M. (2015), Nonlinear Finite Element Analysis of the Reinforced Concrete Panel using High-Strength Reinforcing Bar, Journal of the Korea Concrete Institute, 27(5), 481-488. https://doi.org/10.4334/JKCI.2015.27.5.481
  3. Cheon, J. H., Kim, K. M., Park, K. M., and Shin, H. M. (2016), Study on Seismic Performance Assesment of Reinforced Concrete Shear Wall using High-Strength Reinforcing Bar, Journal of the korea institute for structural Maintenance and Inspection, 21(2), 138-145.
  4. Chris P. Pantelides, Brandon T. Besser and Ruifen Liu. (2012), One-Way Shear Behavior of Lightweight Concrete Panels Reinforced with GFRP Bars, Journal of Composites for Construction, ASCE, 16 (1), 2-9. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000240
  5. Development of Enhancing Life Span Technology for Waterfront Structures using FRP Hybrid Bars (2014), Korea Institute Of Construction Technology(KICT 2014-162).
  6. Design Guideline of FRP-Reinforced Concrete Structure, (2019) Korea Concrete Institute, Gimondang.
  7. Kim, T. H., Lee, K. M., Yoon, K. M. and Shin, S. H. (2003), Inelastic Behavior and Ductility Capacity of Reinforced Concrete Bridge Piers under Earthquake. I; Theory and Formulation, Journal of Structural Engineering, ASCE, 129(9), 1199-1207. https://doi.org/10.1061/(asce)0733-9445(2003)129:9(1199)
  8. Kim, T. H., Lee, K. M., Chugn, Y. S. and Shin, S. H. (2005), Seismic Damage Assesment of Reinforced Concrete Bridge Columns, Engineering Structures, 27(4), 576-592. https://doi.org/10.1016/j.engstruct.2004.11.016
  9. Li, B., Maekawa, K., and Okamura, H. (1989), Contact Density Model for Stress Transfer Across Crack in Concrete, Journal of the Faculty of Engineering, University of Tokyo, 40(1), 9-52.
  10. M. Hasan Meisami, Davood Mostofinejad and Hikaru Nakamura (2014), Punching shear strengthening of two-way flat slabs using CFRP rods, Journal of Composites for Construction, ASCE, 18(2), 112-122.
  11. Okamura, H., Maekawa, K., and Sivasubramaniyam, S.(1985), Verification of Modeling for Reinforced Concrete Finite Element, Finite Element Analysis of Reinforced Concrete Structures, ASCE, 528-543.
  12. Park, S. Y., and Cui, Xian. (2004), Failure Mode and Design Guideline for Reinforced Concrete Slab Strengthened Using Carbon FRP Grid, Journal of the korea institute, 16(5), 667-675.
  13. Portral, N. P.(2015), Usability of Textile Reinforced Concrete: Structural Performance, Durability and Sustainability, Ph. D. thesis,University of Charlmers.
  14. Okelo, R. and Yuan, R. L. (2005), Bond Strength of Fiber Reinforced Polymer Rebars in Normal Strength Concrete; Theory and Formulation, Journal of Structural Engineering, ASCE, 9(3), 1199-1207.
  15. Seong, D. J., Kim, T. H., Oh, M. S. and Shin, H. M. (2011), Inelastic Performance of High-Strength Concrete Bridge Columns under Earthquake Loads, Journal of Advanced Concrete Technology, 9(2), 205-220. https://doi.org/10.3151/jact.9.205
  16. Shima, H. and Tamai, S. (1987), Tension stiffness model under reversed loading including post yield range, IABSE Colloquium Delft, 547-556.
  17. Shin, H. M. (1988), Finite Element Analysis of Reinforced Concrete Members Subjected to Load Reversals, Ph. D. Dissertation, University of Tokyo.
  18. Son, B. R., Kim, C. H. and Jang, H. S. (2015), Behaviour of Lightweight Concrete Slab Reinforced with GFRP Bars under Concentrated Load, Journal of the korea institute for structural Maintenance and Inspection, 19(4), 57-66. https://doi.org/10.11112/JKSMI.2015.19.4.057
  19. Zhang, B., Masmoudi, R. and Benmokrane, B. (2004), Behaviour of one-way concrete slabs reinforced with CFRP grid reinforcements, Construction and Building Materials, 18, 625-635.Received : 00/00/2021 https://doi.org/10.1016/j.conbuildmat.2004.04.007